

Intelligent and Mobile Robotics Czech Technical University in Prague

Intelligent and Mobile Robotics

Libor Přeučil

e-mail: Libor.Preucil@evut.cz

Head Intelligent and Mobile Robotics (IMR) and Center for Advanced Field Robotics (CAFR)

Robotics and Machine Percen

Czech Institute of Informatics, Robotics nad Cybernetics (CIIRC) Czech Technical University in Prague

http://imr.ciirc.cvut.cz, http://cafr.cz

Intelligent and Mobile Robotics Czech Technical University in Prague

Intelligent and Mobile Robotics laboratory, since 1993, http://imr.ciirc.cvut.cz

Focus primarily on **basic and applied research** in the field of **autonomy for robots** (UGV, UAV and manipulators) i.e. general:

- **Robot navigation** for **indoor** and **outdoor**, infrastructurefree and life-long autonomy
- Autonomy for human-oriented and uncontrolled environments handling uncertainty and high complexity cases..
- Robot sensing and environment modeling

About us

- Advanced **planning and scheduling** for robotics
- Swarm and collective robotics, HRI and co-work, hybrid human-robot systems

With application outcomes through **Center for Advanced Field Robotics** (CAFR), since 2012, <u>http://cafr.cz</u>

• Strong links to major robotic labs and industry in CZ and worldwide

Why AI & autonomous systems?

• Ability to handle uncertainty resolution of unpredictable situations, failure detection and recovery, improved runtime performance @ incompleteness of description or uncertainty in the environment

ZECH TECHNICAL

• Adaptation to varying conditions, learning and system scalability

improves performance/adopts task complexity, scalability, runtime task and performance optimization, readiness for operation in indoor/outdoor and natural/urban/ production kinds of environments

- Human-oriented environment capable enables efficient HRI, variation of the workspace over time, uncertainty
- Infrastructure-free operation no need for external support systems for navigation, very flexible and ready to handle changes in the workspace
- Open decentralized (on-board) control and operation in communication inaccessibility system control independent of communication, temporary and long-term autonomy

Some selected research topics...

Visual navigation using embedded scene look

- Relies purely on scene look (monocular RGB/Y camera)
- Builds visual maps using stable descriptors found in scene images
- Visual descriptors represented by either by robust image features (i.e. SURF, SIFT..) working with intensity images, or DNN that comprise intensity properties of the scene image(s) and their topology.
- Highly robust to scene look variations -> well treats diversity of the • same scene, excellent method for incompletely known and varying environments
- Enables performance self-diagnostics via measuring of information • flow from the scene

LArgeMAps concept for representation of large environments with uncertainty

- Elaborated primarily for **outdoor navigation in large and sparse environments**, along roads/streets (urban and roadmap alike environments)
- Ready to handle infrastructure-free and stepwise buildup, capable of reasoning about the environment
- Transition/connectivity graph concept: Combines "place recognition" and connectivity between unique places maintained by place-to-place transitions
- Efficient representation: Places described by embedded visual words - image features and their structures

Prospective application field:

Localization and navigation without GNSS for anykind (and complex) terrains/environments Allows implementation of teach-and-repeat navigation principle

Non-periodic and metamaterial selfassembly

Non-periodic materials

CTU

ZECH TECHNICA NIVERSITY

- Materials with yet new mechanical properties, similar to Wang tiling, application in construction and mechanical computing systems
- Methodology for generation of tile sets with plausible properties
- Elaboration of material self-assembly methods and tools

Surface property coding (glue)

Tile of type L (one cell of material)

Selected applications and success stories

Success stories, examples

- Safe automated storage and logistic systems (EC project Horizon 2020, SafeLog): Advanced solution to human-robot safety and collaboration in logistic setup, advanced planning and scheduling for logistic problems
- UGV autonomy for complex-structured and infrastructure-free environments (VOP CZ, Taros): Autonomous navigation of UGV based on onboard sensors (vision) in any-kind environments. Localization, mapping and path planning for transportation, surveillance and inspection and exploration tasks.
- Smart bin-picking (Skoda Auto, Lego): Advanced sensory data processing, development and prototyping of robust bin-picking and general manipulation of objects.

Advanced safety and task planning for automated/robotic warehouse systems (project H2020: SafeLog)

Next generation safe logistics

SafeLog approach:

CTU

CZECH TECHNICAL UNIVERSITY IN PRAGUE

- Allows safe human presence and collaboration in a warehouse in operation via new safety concept
- Novel methods for steady optimization through "anytime"/real-time approx. resolution of NP-hard planning/routing problems
- Incorporated uncertainty through human presence; intention prediction (hidden Markov models)

UGV autonomy and navigation

for **infrastructure-free**, complex and **uncontrolled environments** (project VOP CZ, TAROS 6x6)

- Relies on observable environment features only, no GNSS or other infrastructure needed
- Primarily passive sensing (vision), RGB camera and/or depth from LIDAR
- Capable of handling very large and sparse environments

Prospective application field of the technology

- Autonomous transportation systems for any-kind environments (indoor, outdoor, natural/ urban)
- Autonomous inspection systems (security, safety and surveillance systems, etc.)
- Service systems in variable areas (warehouses, public spaces, shopping malls, etc.)
- Applications for Smart Cities, autonomous cars (valet parking)

Smart bin-picking

Project Skoda Auto, Lego (SmartBinPicking, Pick&Place)

- Automated picking of unevenly laid parts from bins, sorting/feeding assembly lines
- Vision-based manipulator guidance in 3D and pickplanner system.
- Novel approach to image processing using (D)NN, high variability of the solution
- Optimized solution costs

Thank you for your attention!

Contact: Libor Preucil

E-mail: Libor.Preucil@cvut.cz

Head Intelligent and Mobile (IMR) and Center for Advanced Field Robotics (CAFR)

Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague <u>http://imr.ciirc.cvut.cz</u> <u>http://cafr.cz</u>

