Center for Robotics and Autonomous Systems

https://robotics.fel.cvut.cz

Karel Zimmermann

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Department of Cybernetics

Head: Tomáš Svoboda

Research groups:

- Center for Robotics and Autonomous Systems (CRAS)
- Visual Recognition Group (VGL)
- Machine Learning (ML)
- Biomedical Imaging Algorithms (BIA+AID)

Department of Cybernetics

Head: Tomáš Svoboda

Research groups:

- Center for Robotics and Autonomous Systems (CRAS)
- Visual Recognition Group (VRG)
- Machine Learning (ML)
- Biomedical Imaging Algorithms (BIA+AID)

Center for Robotics and Autonomous Systems https://robotics.fel.cvut.cz/cras/

Tomas Svoboda

Karel Zimmermann

Martin Saska

Jan Faigl

15+ PhD students

Research interests

- Self-driving cars
- Search and Rescue Robotics

Self driving cars

- Longterm cooperation with Valeo
- H2020 EU research projects (Enable S3)
- Shared datasets and students

Lidar with independent steering of depth-measuring rays

Emitted laser beams Transmitted through **Optical Phased Array** Controlling optical properties of OPA elements, allows to steer laser beams in desired directions Reflected laser beams are captured by SPAD array

Images of S3 Lidar redistributed with permission of Quanergy Systems (<u>http://quanergy.com</u>) Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics

Active 3D mapping Experiment: Qualitative evaluation

Sparse measurements

Reconstructed map

Ground truth

Sparse measurements Reconstructed map

Ground truth

[1] <u>Zimmermann</u>, Petricek, Salansky, Svoboda, Learning for Active 3D Mapping, ICCV oral, 2017 https://arxiv.org/abs/1708.02074

Object detection and tracking

- [2] <u>K.Zimmermann</u>, D.Hurych, T.Svoboda, Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA), **TPAMI (IF=5)**, 2014
- [3] <u>K.Zimmermann</u>, J.Matas, T.Svoboda, *Tracking by an Optimal Sequence of Linear Predictors*,**TPAMI (IF=5 selected for II.pillar evaluation)**, 2009.

Data-driven simulation from GTA Depth images

Stencil layer

Stencil layer - cars

Stencil layer - humans

Stencil layer - vegetation

Stencil layer - sky

Stencil layer - artificial light

Stencil layer - artificial light

virtual car in GTA environment

ideal RGBD images

Input

Geometric simulation of lidar from depth

Input

Geometric simulation of lidar from depth

Learned reflectivity

Preparing publicly available dataset with Valeo R&D

Research topic outline

- Self-driving cars
- Search and Rescue Robotics

Research topic outline

- Self-driving cars
- Search and Rescue Robotics

DARPA Subterranean challenge

Urban Environment

Tunnel Environment

Artist's Concept

https://www.subtchallenge.com

Cave Environment

Tunnel Systems • Urban Underground • Cave Networks

Competition Tracks

Systems Track • Virtual Track

Revolutionary Vision

Create breakthrough technologies and capabilities for underground operations

Learn More at www.darpa.mil

DARPA SubT integration exercise

Motion and compliant control

[3] Pecka, Zimmermann, Svoboda, Hlavac, et al. IROS/RAL/TIE(IF=6), 2015-2018

DARPA SubT integration exercise

• Our team achieved best score in our group

Mohamed bin Zayed International Robotics Challenge

2017 + 2020

UAV - Landing on a moving target

Contact: Martin Saska

The helicopter has to fly up autonomously above the field, where the car is expected to move, and to localize the car using the landing pattern carried on its roof.

coordinate UAVs – Treasure hunt

Contact: Martin Saska

Firstly, the helicopters have to scan the entire environment to localize the objects by onboard cameras, then to plan trajectories over the estimated locations of objects to refine these positions and to start with collecting of the individual objects.

MBZIRC – Victory

We search for collaboration opportunities

- PostDocs
- PhD students
- EU project partners

- aerial and ground robotics
- self-driving cars
- in humanoid robotics and grasping
 - computer vision
 - machine learning
- We are building consortium for the new EU project (besides research organization firefighters and first responders are needed)

https://cyber.felk.cvut.cz

http://robotics.fel.cvut.cz

