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• Self-driving cars 
• Search and Rescue Robotics
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• Longterm cooperation with Valeo  
• H2020 EU research projects (Enable S3) 
• Shared datasets and students

Self driving cars
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Lidar with independent steering of depth-measuring rays
S3 principle

Transmitted through 
Optical Phased Array

Emitted laser beams

Controlling optical properties of OPA 
elements, allows to steer laser 
beams in desired directions

Reflected laser beams are captured 
by SPAD array

Images of S3 Lidar redistributed with permission of Quanergy Systems (http://quanergy.com)

Active 3D mapping

http://quanergy.com
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All maps used axis-aligned voxels of edge size 0.2m.
For generating the sparse measurements, we consider an

SSL sensor with the horizontal field of view of 120 deg
and vertical 90 deg. The possible rays to choose from
are obtained by discretizing the sensor field of view in
160 ⇥ 120 = 19200 directions. At each position, we se-
lect K = 200 rays and ray-trace in these directions until
an occupied voxel is hit or the maximum distance of 100m
(which corresponds to 500 voxels) is reached. Only the rays
which end up hitting an occupied voxel contribute to the
measurements. Local maps xl and yl contain volume of
64m⇥64m⇥6.4m discretized into 320⇥320⇥32 voxels.

6.2. Active Mapping

In this experiment, we used 17 and 3 sequences from
the Residential category for training and validation, respec-
tively, and 13 sequences from the City category for testing.
Following the alternating procedure of learning and plan-
ning as described above (see Sec. 3–5), we learned mapping
networks h0, h1, . . . , ht using batch size 1 and momentum
0.99. The learning rate always started at ↵ = 10�3. Train-
ing the initial network h0 took 200000 iterations and twice
decreasing the learning rate, to 10�4 after 100000 itera-
tions and 10�5 after 150000 iterations. Training the succes-
sive networks ht took 100000 iterations (approximately one
day) with exponentially decreasing learning rate to ⇡ 10�5.
We have observed that the net ht achieve best results al-
ready after 3 or 4 planning-training iterations.

As can be seen from the ROC curves in Fig. 4, the perfor-
mance after 4 planning-training iterations overcomes net-
work without planning. When we have evaluate network
h0 with planning for new input, ROC curve was almost in-
distinguishable from the one generated by h0 with random
rays.

Input of the network xl contains around 2.5% of known
voxels the rest of the voxels are estimated by the CNN. ROC
curves in this section are computed using global confidence
map ŷ and ground truth map y. An examples from recon-
structions are shown in Fig. 5.

6.3. Comparison to a Recurrent Image-based Ar-

chitecture

We provide a comparison with the image-based recon-
struction method of Choy et al. [3], namely the residual
network with Gated Recurrent Units (GRU) units, Res3D-
GRU-3, which we modified to use sparse depth maps of size
160⇥120 instead of RGB images, with K = 200 randomly
selected depth-measuring directions.5 The sensor pose cor-
responding to the the last received depth map was used as
the canonical object pose for reconstruction. The number
of views were fixed to 5 both in training and testing. In this

5Some of these typically did not yield valid measurement.
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Figure 4. Recall to false-positive rate on test data for network
h0 (Random) and h4 (Coupled) . False positives which can be
attributed to discretization error (in 1-voxel distance to occupied
voxels) do not count.

Figure 5. Two examples of global map reconstruction. The black
line denotes trajectory of the car. Top row: The measurement
maps x. Middle: Reconstructed and thresholded maps ŷ. Bot-
tom: Ground-truth maps y.

particular experiment, we used 20 sequences from the Resi-
dential category—18 for training, 1 for validation and 1 for
testing. For comparison we had to limit the batch size to 1
and the size of the outputs to 128 ⇥ 128 ⇥ 32. This corre-
sponds to 16 ⇥ 16 ⇥ 4 GRU units. Our mapping network
was trained and tested on the same training data but using
voxel maps instead of depth images.

A performance comparison in form of ROC curves is

8

trees cars

Reconstructed map

Sparse measurements

Ground truth

Experiment: Qualitative evaluation
Active 3D mapping
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Zimmermann, Petricek, Salansky, Svoboda, Learning for 
Active 3D Mapping,  ICCV oral, 2017

[1]
https://arxiv.org/abs/1708.02074

Active 3D mapping
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K.Zimmermann, D.Hurych, T.Svoboda, Non-Rigid Object 
Detection with Local Interleaved Sequential Alignment 
(LISA), TPAMI (IF=5), 2014

[2]

[3] K.Zimmermann, J.Matas, T.Svoboda, Tracking by an 
Optimal Sequence of Linear Predictors,TPAMI (IF=5 
selected for II.pillar evaluation), 2009.

Object detection and tracking
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RGB images

Data-driven simulation from GTA
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Depth images

Data-driven simulation from GTA
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Stencil layer

Data-driven simulation from GTA
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Stencil layer - cars

Data-driven simulation from GTA
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Stencil layer - humans

driver ’s hand

Data-driven simulation from GTA

pedestrian
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Stencil layer - vegetation

Data-driven simulation from GTA
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Stencil layer - sky

Data-driven simulation from GTA
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Stencil layer - artificial light

Data-driven simulation from GTA
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Stencil layer - artificial light

Data-driven simulation from GTA
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Data-driven simulation from GTA



Geometric simulation of lidar from depthInput
Data-driven simulation from GTA



Geometric simulation of lidar from depth

Data-driven refinement

Input

weak response
strong response

Valeo lidar dataset

Data-driven simulation from GTA



Data-driven simulation from GTA

Learned reflectivity
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Preparing publicly available dataset with Valeo R&D

Data-driven simulation from GTA
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• Self-driving cars 
• Search and Rescue Robotics

Research topic outline
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https://www.subtchallenge.com

DARPA Subterranean challenge
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DARPA SubT integration exercise
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[3] Pecka, Zimmermann, Svoboda, Hlavac, et al.  
      IROS/RAL/TIE(IF=6), 2015-2018

Motion and compliant control
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DARPA SubT integration exercise

• Our team achieved best score in our group



Mohamed bin Zayed International Robotics 
Challenge

2017 + 2020



UAV - Landing on a moving target
Contact: Martin Saska 



coordinate UAVs – Treasure hunt
Contact: Martin Saska 



MBZIRC – Victory 



Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

• PostDocs  
• PhD students  
• EU project partners 

We search for collaboration opportunities
• aerial and ground robotics 
• self-driving cars 
• humanoid robotics and grasping 
• computer vision 
• machine learning

in

https://cyber.felk.cvut.cz
http://robotics.fel.cvut.cz

• We are building consortium for the new EU project (besides 
research organization firefighters and first responders are 
needed)


