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Why measure individual muscle forces!?

“Despite great scientific efforts, we have no accurate, non-invasive, and simple way of measuring
[or predicting] individual muscle forces ... during human movement. | believe [solving this problem]
will catapult our understanding of animal movements and locomotion into new and exciting
dimensions.”

— Walter Herzog, 2017
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Muscle Force Inference: State-of-the-Art Shortcomings
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Muscle Force Inference: State-of-the-Art Shortcomings

Muscle Output

Neurological i Contraction ) Force
. . # % —
Actl\Cr;tlon By F m f (a)
via electro- f ( )
myography

(EMG)

\ J = - noisy
- surface-only (if non-invasive)
- sensitive to electrode placement
- aggregate
- based on neurological signals (not
directly correlated with force output)
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Muscle Force Inference: Our Approach

Neurological
Activation =P

via electro-

myography
(EMQG)
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0 =258 6 =69°
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via ultrasound

Deformation is a highly localized mechanical
signal, allowing for measurement of individual
muscle force without considering the
neurological feedback loop. (Until we want
to explicitly study it!)
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Muscle Force Inference: Our Approach
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Roadmap

We seek to measure individual muscle forces in vivo via ultrasound based on shape
changes under loading.

Exploratory Data Set Model Development & Proof-of-Concept Applications
Generation Validation

Alternate Modalities, Schedule, & Conclusions
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Muscle Force Inference: Our Approach

Muscle Output
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(Simplified) Biological Mechanism

When muscles are activated by the nervous
system, they contract, extending springlike
tendons, which impart force to the skeleton.

Muscles are isovolumetric, so decreases in
muscle length result in increases in cross-
sectional area that should be visible in our
data set.

I A: Data Set Scope
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Deformation Modeling Challenges

|. Observed deformation varies substantially with sensor location.

Muscle Cross-Section (Brachioradialis)
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Deformation Modeling Challenges

|. Observed deformation varies substantially with sensor location.

2. Deformation occurs under changes in both kinematic configuration and force output.
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Deformation Modeling Challenges

|. Observed deformation varies substantially with sensor location.

2. Deformation occurs under changes in both kinematic configuration and force output.

To build a model that can robustly infer muscle force, we need to observe the entire muscle under
multiple (ideally, factorial) joint positions and loading conditions.
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Data Collection Setup: Ultrasound + Motion Capture

Raw Data Collection Volumetric Reconstruction Tissue Segmentation
via Ultrasound & Motion Capture via PLUS Toolkit in ITK-SNAP

Using motion capture to track the ultrasound probe position, we can generate full 3D scans
of the arm under static conditions.

[Hallock, Kato, Bajcsy, ICRA 2018]
Berkeley
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Preliminary Data Set

Model target: elbow flexors (biceps brachii,
brachialis, brachioradialis)

Data set:

* 3 subjects (I F2 M)

e full arm ultrasound volumetric scan
* 4 elbow flexion angles, 0—90°

* 5 loading conditions
— FS: fully supported
— GC: gravity compensation only
— LF:light wrist weight (~225g)
— MF: medium wrist weight (~725g)
— HF: heavy wrist weight (~950g)

Ultrasound volumetric data collection, HART Lab 2017

[Hallock, Kato, Bajcsy, ICRA 2018]
| C: Data Collection 27




Preliminary Results: Qualitative

FS LF HF
(“Fully Supported”) (“Low Force”) (“High Force”)

& [Hallock, Kato, Bajcsy, ICRA 2018]
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Data Set Release: OpenArm 1.0

Projects ~ About ~~ SignUp Loglin

@ Projects People

m OpenArm: Volumetric Models of @990

Follow Project ~v

.~ Force- and Kinematic-Induced
Muscle Deformation

About Downloads Documents Forums Issues News

The OpenArm data set is a factorial set of volumetric scans of the arm, generated using
ultrasound and motion capture, that allows for analysis of both force- and configuration-
associated muscle deformation for applications in biomechanics research, computer graphics,
and assistive device development.

62

We invite anyone in the research community to use the OpenArm data set to validate existing
muscle deformation models or to devise new ones.

Full details can be found in the following paper:

Laura Hallock, Akira Kato, and Ruzena Bajcsy. "Empirical quantification and modeling of muscle
deformation: Toward ultrasound-driven assistive device control.” In |IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018.
(https://ieeexplore.ieee.org/abstract/document/8462887)

This project is currently in development in the Human-Assistive Robotic Technologies (HART) Lab
at the University of Califarnia Berkelev (hitn//hart herkelay edi)

[Hallock, Kato, Bajcsy, ICRA 2018]
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Automated Tissue Segmentation: U-Net

intensity map (2D slice) output segmentation (2D slice)

(2D) U-Net

-------------------------------------------------

--------------------------------------------------

[Ronneberger et al. 2015]

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Automated Tissue Segmentation: U-Net

intensity map (2D slice) output segmentation (2D slice)
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Automated Tissue Segmentation: U-Net

intensity map (2D slice) output segmentation (2D slice)

(2D) U-Net

-------------------------------------------------

--------------------------------------------------

[Ronneberger et al. 2015]

CNN-based segmentation performs better than
classical registration on the center of the muscle,
where we focus our modeling analyses.

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Automated Tissue Segmentation: U-Net

intensity map (2D slice) output segmentation (2D slice)

(2D) U-Net

-------------------------------------------------

--------------------------------------------------

[Ronneberger et al. 2015]

CNN-based segmentation performs better than
classical registration on the center of the muscle,
where we focus our modeling analyses.

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Registration U-NET+EA Multi-Subject U-NET+EA

new angle,
same force,
same subject

(Subl, 60°, FS)

same angle,
new force,

same subject
(Subl, 30°, P3)

same angle,
same force,

new subject
(Sub2, 30°, FS)

[Nozik*, Hallock*, Ho, Mandava, Mitchell, Li, Bajcsy, EMBC 2019]
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Roadmap

We seek to measure individual muscle forces in vivo via ultrasound based on shape
changes under loading.

Exploratory Data Set Model Development & Proof-of-Concept Applications
Generation Validation

Alternate Modalities, Schedule, & Conclusions
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(Simplified) Biological Mechanism

BRAIN

A
SPINE

A
PNS

How close is what we observe
to the simplified model?

IIA: Modeling Framework 52



[Hallock, Kato, Bajcsy, ICRA 2018]

90°

Exploratory Data Analysis: OpenArm 1.0

Cross-Sectional
Area

CSAp rc(z) Thickness

Ty .ro(x)
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[Hallock, Kato, Bajcsy, ICRA 2018]

90°

Exploratory Data Analysis: OpenArm 1.0

60°

30°

Cross-Sectional
Area

CSAQ’LC (SL‘)

Thickness
Ty .ro(x)

Biceps Cross-Section
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[Hallock, Kato, Bajcsy, ICRA 2018]
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Exploratory Data Analysis: OpenArm 1.0

Cross-Sectional
Area

CSAQ’LC (SL‘)

Berkeley
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Biceps Cross-Section

Thickness
Ty .ro(x)

[Hallock, Kato, Bajcsy, ICRA 2018]
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Exploratory Data Analysis: Statistical Shape Modeling

SHAPE DECOMPOSITION: 1
S =S8+ Pb T |
g
First Shape Modes 0 Number ;f Principal Céomponents ;
A \
No Force,Vary Angle 30° Angle,Vary Force

-------
.......
—
*
.

I—»QS‘ Biceps Cross-Section 78% var. "N

B€I‘k€1€y I1A: Modeling Framework 57
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Expanded Biological Mechanism

Multi-muscle dynamics

BRAIN — synergies
— contact forces
VA
SPINE
VA
PNS
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Expanded Biological Mechanism

* Multi-muscle dynamics

BRAIN — synergies
— contact forces
L2 * Geometric complexity
SPINE — nonlinear, config-specific “line of action™
— pennation angle
A

— tendon/aponeurosis thickness
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Expanded Biological Mechanism
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Expanded Biological Mechanism

* Multi-muscle dynamics

BRAIN — synergies
— contact forces

L2 * Geometric complexity
SPINE — nonlinear, config-specific “line of action™

— pennation angle

— tendon/aponeurosis thickness

* Mechanical complexity

— fiber type (| or Il)
— hysteresis

— concentric vs. eccentric contraction

— fatigue

* Neurological complexity
— motor unit distribution
— tetanic vs. subtetanic contraction

— feedback vs. feedforward control
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Expanded Biological Mechanism

BRAIN

A

SPINE

A

PNS

Multi-muscle dynamics

Geometric complexity

Mechanical complexity
— fiber type (| or II)

Neurological complexity

— motor unit distribution
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Expanded Biological Mechanism

SRAIN CHALLENGE: “One step forward, one step back”
17

SPINE
A
FNS * Maechanical complexity

m — fiber type (I or Il)

Neurological complexity

— motor unit distribution

: Modeling Framework 63



Expanded Biological Mechanism

BRAIN
YA The more closely we attempt to model biological mechanisms, the
T more values and parameters we must assume based on literature.
- | | 4

: Modeling Framework 64
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Text =T X Fext Fext
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Text =T X Fext Fext
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‘“black box”’ ‘“white box”’

“model free” + multi-muscle
baseline dynamics

Musculoskeletal Dynamics [assumed]
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(Proposed) Suite of Models
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(Proposed) Suite of Models

Text =T X Fext
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Model Validation

U = J ‘
\ Uitrasound 3 EMG
\ Transit
Strain gauge Time

(spindie length)

Frame

Tendon Strain gauge

[Barnes & Pinder 1974]

[Hoffer et al. 1989]

—[Sherif et al.1983] [Salmons 1969]
[Yager 1972]

Berkeley
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IE=1.S=9.T=2:ESTi‘=4.U 5B
Upper e o]
|
F=1,5=9,T=3:E5Ti"=4.3 18 dB

Middle 7 AWMWM]W LA

m. Biceps brachii (long head)

[Harrison 2017]

0 50
[Martin et al. 2018] Ankte toraue (N m)

| |C: Model Validation

72



Roadmap

We seek to measure individual muscle forces in vivo via ultrasound based on shape
changes under loading.

Exploratory Data Set Model Development & Proof-of-Concept Applications
Generation Validation

Alternate Modalities, Schedule, & Conclusions
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Preliminary Deformation Signal Tracking

Points along the muscle
fascia can be reliably
tracked in real time
via Lucas-Kanade
optical flow.

[Schwartz, Velu]

I 11: Proof-of-Concept Applications 75




Real-Time Device Control: Robot Teleoperation

PD Controller

kp, kp

IIIA: Device Control
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Real-Time Device Control: Baseline sEMG Control

Fdes X XJiff

PD Controller

kp, kp

IIIA: Device Control
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Real-Time Device Control: Proposed Control

Fdes X Dbiceps

PD Controller

kp, kp
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Real-Time Device Control: Proposed Control

Proof-of-Concept
Fes Dbiceps Application: ball catching!

PD Controller

kp, kp

I lIA: Device Control 79



In Vivo Muscle Force Inference: State-of-the-Art

Joint Angles / Joint Muscle Output
Velocities Torques Forces
10,0} Nverse | U7 COSTFUNCTION | {fm}
—l | (e.g., Minimum total energy, =]
DYNAMICS .
sEMG matching)

[e.g., OpenSIM, AnyBody]

1 1IB: Extant Framework Evaluation 80



Deformation-Enhanced In Vivo Muscle Force Inference

Joint Angles / Joint Muscle Output
Velocities Torques Forces
10,0} Nverse | U7 cosTFUNCTION | {Fm} =1 Fhiceps; -}
— | (e.g., minimum total energy, [——)
DYNAMICS .
sEMG matching)

[e.g., OpenSIM, AnyBody]
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Deformation-Enhanced In Vivo Muscle Force Inference

Joint Angles / Joint Muscle Output
Velocities Torques Forces
10,0} Nverse | U7 cosTFUNCTION | {Fm} =1 Fhiceps; -}
—l | (e.g., Minimum total energy, =]
DYNAMICS .
sEMG matching)

[e.g., OpenSIM, AnyBody]

Muscle Output Joint Angles /
Forces Velocities
{F } {9 9} Measuring individual muscle forces allows for
. FORWARD ? probing / validating current ID inference
I DYNAMICS > models and developing FD measurement
systems with reasonable behavior.

1 1I1B: Extant Framework Evaluation




Future Directions: Closing the Loop

BRAIN | EEG,ECoG
VA
SPINE
nerve cuff
V‘ electrodes
PNS
(s)EMG
/“'\‘
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Future Directions: Closing the Loop

cerebral palsy
BRAIN | EEG, ECoG Parkinson’s

stroke
YA ALS

SPINE | SCI

nerve cuff
A

electrodes muscular
dystrophy

(s)EMG

PNS
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Future Directions: Closing the Loop

BRAIN

A

SPINE

A

PNS

cerebral palsy

EEG, ECoG Parkinson’s

ALS

SCI

nerve cuff
electrodes

stroke

muscular
dystrophy

(s)EMG

Measuring muscle output force directly would
allow for improved interpretation of
existing sensing modalities, as well as
better understanding, diagnosis, and
treatment of neuromuscular pathology.

I 11: Proof-of-Concept Applications



Roadmap

We seek to measure individual muscle forces in vivo via ultrasound based on shape
changes under loading.

Exploratory Data Set Model Development & Proof-of-Concept Applications
Generation Validation

Alternate Modalities, Schedule, & Conclusions 86



Muscle Force Inference:AMG

Muscle Output

Neurological f Contraction ) Force
Dynamics
via electro-
myography Deformation Dynamics Vibration Dynamics

(EMG) h(-) — h_l(v)

I I

Muscle Deformation Muscle Vibration

V =h(F,,)

Vibration (as measured |
via AMG) also serves as i W"ﬂ“llﬁ"m

a mechanical signal of : | "
muscle force. |

_ﬁ_

via ultrasound via acoustic myography (AMG)

Alternate Modalities, Schedule, & Conclusions 87



Preliminary AMG-Force Model

AMG amplitudeA X [# activated muscle fibers]
muscle force Fm x Av

AMG frequency IV X [mean fiber force]
[Harrison ’| 8]

0.15
s P J/I/I * Preliminary data show significant
> 4 o

< 005 correlation of Av quantity
L L with muscle output force

LLLLLLL

0

0
7 (Nm)

A * Currently working to validate

B model and investigate its

spatial/temporal resolution

A

0.2
<

0.3
le = 051A11/1 a {

Fo = C¥2A2V2 <

0 10 20 30 40 50 60
T Sample Number

[Hallock, Bajcsy, EMBC 2018]
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Roadmap: Recap

CORE OBJECTIVE

e ens, e ens, e,
| Exploratory Data Set 'l Model Development & 11! Proof-of-Concept Applications :
Generation t: Validation :: :
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Roadmap: Recap of Planned Contributions
CORE OBJECTIVE

| Exploratory Data Set 'l Model Development & 11! Proof-of-Concept Applications :

Generation ‘: Validation ¥ & :

a first-of-its-kind muscle . - . /X
deformation data set, with o a suite of models resulting S

accompanying processing and - n tf.1e ﬁ.rst.n? e T
analysis code, useful to a invasive individual muscle

variety of fields (biomechanics, force measurement
animation, etc.)

a proof-of-concept control
application demonstrating
the utility of this technology

Alternate Modalities, Schedule, & Conclusions
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