
Výsledek výzkumu a vývoje projektu TN01000024

Identifikační kód výsledku: TN01000024 - V45

Název: SkodaOnto – ontologie procesu výroby a měření kvality

Typ výsledku: R – Software

Anotace: Softwarový balík, který obsahuje Java aplikaci zodpovědnou za vytvoření

znalostní báze, znalostní bázi samotnou a skripty pro interakci s touto
znalostní bází v Pythonu. Znalostní báze je OWL ontologie reprezentující
proces obrábění hlav motoru a proces měření znaků kvality vyrobených
dílů. Ontologie obsahuje sémantické znalosti o nástrojích a jejich nastavení,
obráběných objektech, měřících strojích a jejich čidlech a výsledcích měření
znaků kvality. Přiložené skripty jsou příklady využití ontologie pro tři různé
aplikace (simulace výroby a měření, diagnostika statisticky nezvládnutého
stavu procesu nebo optimalizace ceny zajištění kvality). Java aplikace
využívá OWL API pro vytvoření ontologie a načtení individuí. Skripty
využívají OwlReady2 balíček pro Python pro interakci se znalostní bází
pomocí SPARQL dotazů.

Termín dosažení: 12/2022

Vlastníci výsledku: ČVUT v Praze, ŠKODA AUTO a.s.

Tento výsledek byl vytvořen se státní podporou Technologické agentury ČR v rámci programu Národní Centra
kompetence, projekt č. TN01000024, Národní Centrum Kompetence-Kybernetika a umělá inteligence (NCK KUI).

SkodaOnto -

Ontology for representation of manufacturing and measuring

process

Petr J̊uza, Martin Macaš

January 2023

This technical report describes the proposal of ontology representing the provided Škoda quality
control use case. It presents technologies used for the proposed ontology and describes the imple-
mentation of the ontology. A more detailed description can be found in bachelor thesis of Petr J̊uza
[6]. The ontology was created by Petr J̊uza within his work on subproject ”Big data, security and
data integrity” of the project ”National Competence Center – Cybernetics and Artificial Intelligence”
funded by Technology Agency of the Czech Republic.

1 Quality inspection use case

In this chapter, we analyze the provided use case, describe the given domain and present possible
utilization. Section 1 presents a quality control loop which is a significant part of quality management,
describes its steps and briefly suggests possible utilization. Section 1.1.5 presents the provided use
case focusing on both the manufacturing and quality inspection parts in detail.

1.1 Quality control loop

Before we describe the quality control loop, a quality inspection needs to be introduced. Quality
inspection can be characterized as a process of reviewing final product characteristics and checking
for conformance to required standards. In contrast to quality control, quality control employs results
obtained by quality inspection to find the cause of problems.

The quality control loop (Fig. 1) captures the manufacturing process as a set of inputs transformed
into a set of outputs, along with quality inspection (measurement) and process control. Quality
inspection is carried out according to the sampling plan. The sampling plan defines which and when
characteristics should be acquired. The resulting characteristics are then subjected to out-of-control
state detection. The positive detection triggers an assignable cause finding procedure (diagnostics)
and selection of an appropriate control action. The knowledge representation (KR) described in this
work directly covers the process (machining) and measure (quality inspection) activity of a particular
engine head type. The following subsections analyze each step of the control loop [9].

1

Figure 1: Quality control loop

1.1.1 Process

Process, in the context of Škoda Auto use case, is machining, where a raw material is cut into the
desired shape, i.e., a machine tool processes a raw piece of engine head by creating new objects on the
engine head. The formal representation covers not only individual steps of machining but also objects
that are the results of machining activities, tools, null points settings, machine tools, etc. Subsection
1.2 presents the process representation in detail.

1.1.2 Measurement

In our use case, measurement is a quality inspection activity that collects data from a machined
product in the form of characteristics. The measurement itself is performed via measuring systems
— coordinate measuring machines (CMM) or handheld metrology tools. The system can be based on
computer vision techniques in other applications. According to the measurement strategy [14], a CMM
scans the engine head, constructs abstract elements representing machined objects and computes the
final characteristic through elements. E.g., the CMM scans a circular path inside a machined hole
then the CMM constructs a circle from the scanned data and computes the diameter of the circle.
The diameter represents the diameter of the hole. Another example is two surfaces that make an
angle. The CMM scans the surfaces, constructs two planes, and computes an angle between them.
Subsection 1.2.1 focuses on the measuring section of the use case.

1.1.3 Out of control state detection

First, we clarify an out-of-control process concept. Montgomery [10] defines it as follows: “A process
that is operating in the presence of assignable causes is said to be an out-of-control (OOC) process.”
Although this could lead to out-of-control state detection by finding the assignable cause, this is not

2

our case. Montgomery describes tools for OOC state detection involving measured characteristics
as mentioned in the previous subsection 1.1.1. Two sufficient methods are presented: the Shewhart
control chart and its multivariate extension - the Hotelling T 2 control chart.

A paper [9] applies One-Class Support Vector Machine (OSVM) [13] as a supervised machine learning-
based method for OOC state detection. A comparison of the Shewhart, Hotelling T 2, and OSVM was
made and OSVM outperformed the other methods.

1.1.4 Assignable cause finding

Positive detection of the OOC state launches an assignable cause-finding procedure [9]. An objective
is to find an underlying cause that raised an alarm. Currently, it is up to a machine tool operator
to analyze a product and carry out an assignable cause. For automation of this procedure, a proper
formal representation has to be available to allow an automated potential cause finding.

1.1.5 Selection of control action

Selection of control action is a consecutive procedure that follows after the assignable cause is found.
Currently, a machine tool operator performs a corrective action manually, e.g., a visual inspection of
a product.

1.2 Engine head manufacturing and inspection

The following subsections describe machining and measuring parts of the production process as ap-
plied in the provided Škoda Auto use case. Although the production process is quite complex for a
noninvolved person, we will try to describe it as close as it happens in reality, although with some
simplifications. There were several consultation meetings between colleagues from the Škoda Auto
Measurement Laboratories and us to profoundly understand the manufacturing and measuring do-
main.

Every concept presented below might be a potential cause of out of control state detection, therefore
it is essential to have a formal representation of both machining and measuring processes to detect a
possible cause of defect, to have the ability to perform a process simulation, or to minimize the costs
of measurement.

1.2.1 Machining Part

At this time, the process handles the manufacturing of eleven engine head types. Fig. 2 shows one
of the types of engine heads. A machine tool manufactures engine head type according to a program.
It follows that there are eleven programs.

A program is a setting of NPVs (NPV is described in the paragraph below) to a tool. It is defined by
a machine tool operator and executed by a machine tool. The actual values of NPVs are determined
by a ZOS (ZOS is described in the paragraph below) that is used by the program. The program has
set exactly one ZOS.

The provided use case focuses on one specific operation from a sequence of operations, specifically
operation 30. Previous operations may have prepared the manufactured product in order to allow
processing defined by the current operation. Following operations may need the current operation

3

Figure 2: 3D model of an engine head

in favor to complete the product manufacturing. The manufacturing of the whole engine head is a
pipeline of production operations and the quality control loop depicted in Fig. 1) covers the control
of one specific operation.

Null Point Shift (abbreviated NPV, from german Nullpunktverschiebung) can be seen, for simplifi-
cation, as a coordinate in a rectangular cuboid defined by a machine tool. In fact, it is a so-called
g-function (from a g-code1) that sets a default position of the NPV. Particular coordinates are bound
by ZOS. coordinates. A machine tool operator sets (via a program) one or more NPVs to any number
of tools equipped on a machine. It is necessary to move together all tools that are linked with the
same NPV. This situation typically occurs whenever an object is drilled at first, then milled and
finally ground; i.e. three different tools operate on this procedure.

A mapping table (abbreviated ZOS, from german Zuordnungstabelle) is a setting of NPVs in a machine
tool. Operation 30 makes use of four ZOS tables, each of ZOS used by one or more programs.

A machine tool is a machine that transforms an input product into an output froduct according to
a program. Currently, five machine tools operate in a manufacturing process. Each of the machine
tools has two fixtures and spindles, we call a pair of fixture and spindle a nest. Thus, a machine tool
has two nests. Each nest has a worktable and a set of tools to manufacture the input. One machine
tool handles the manufacturing of two engine heads and a whole workshop of ten engine heads at a
time.

Tools are mounted to a machine tool nest and are necessary to complete the current operation. There
are several tool types. Tool quality is a key parameter to delivering optimal quality of a manufactured
product. Every tool gets worn over time and is extremely important to monitor the tool’s state and
replace it if needed.

Objects are entities that are created by a tool. Two types of objects are being created — holes and
surfaces (as visible in Fig. 2). An object is usually machined by multiple tools. The quality of an
object is measured in form of characteristics related to a given object.

1https://en.wikipedia.org/wiki/G-code

4

https://en.wikipedia.org/wiki/G-code

1.2.2 Measuring Part

A measuring of characteristics of manufactured engine head is accomplished by either one of the
commercial coordinate measure machines Zeiss Prismo2 or Zeiss DuraMax3, or by handheld metrology
tools.

Elements are abstract geometric entities that are computed by a coordinate measuring machine
(CMM) from the measured data. Those entities are cones, cylinders, planes, circles, points, etc.
The CMM measures an element with a certain sensor, according to element type and its position.
The CMM measures elements according to a measurement plan, the element is measured only if it is
needed for a characteristics computation, i.e. no elements are measured twice. A measurement plan
defines a measurement strategy — parameters set by a CMM operator for optimal element measure-
ment. We call these parameters as measurement and construction settings. Last but not least, some
elements are essential to derive other elements (e.g., a point derived from a plane), and some elements
compose a reference (e.g., a reference plane composed of several planes).

Measurement settings are sets of parameters determining the measurement strategy. It represents
parameters such as measurement method (scanning or tactile), path type (polyline, circular path,
single points), speed and step (for polylines and circular paths), desired point count, actual point
count, and angle range (for circular paths). We can easily compute a duration of measurement for an
element component by multiplying the actual point count by the step, divided by the speed.

Construction settings are sets of parameters determining filtering and construction parameters for the
measured data. It represents parameters such as filtering method, filter type, filter kind, additional
filter parameters, elimination of outliers condition, and construction method.

Two types of sensor carriers can be mounted on the CMM. Type K130 has five sensors, named by
numbers from one to five. Type K60 has two sensors, named two and four. Although K130 and K60
have sensors two and four labeled identically, they are different physical objects.

References are of two subtypes, either a coordinate system or a group of elements (even a single-element
group). In most cases, the CMM computes characteristics by referencing the standard coordinate
system, in some cases, there can be a coordinate system defined by one or two objects. An example
of a reference consisting of elements is a plane, constructed by other planes.

Characteristics are the key factors of quality. Characteristics are computed by accessing elements or
by referring to a reference. A computation is up to the CMM and can be influenced by adjusting
a measurement strategy. Characteristics such as diameter, position, angle, distance, concentricity,
flatness, parallelism, or tilt are then subjected to an out-of-control detector.

2 Proposal of ontology

In this chapter, we propose SkodaOnto — ontology for manufacturing and measuring processes in
Škoda Auto. We used a guide [11] as a support material for the development. The guide mentions
three important notes:

2https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/bridge-type-cmms/

prismo.html
3https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/production-cmms/

duramax.html

5

https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/bridge-type-cmms/prismo.html
https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/bridge-type-cmms/prismo.html
https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/production-cmms/duramax.html
https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/production-cmms/duramax.html

Table 1: Enumeration of all important terms
Machining Measuring

concepts object, npv, tool, nest,
machining tool

characteristic, element,
reference, measure ma-
chine, measure method,
measure strategy, filtering
method, filter type, filter
subtype, construction
method, sensor, sensor
carrier

parameters speed, step, desired point
count, actual point count,
measure time, angle
range, filter parameter,
eliminating outliers

• There is no one correct solution how to model an ontology.

• Ontology development is an iterative process.

• Concepts and relations in the ontology should be close to concepts and relations in the domain.

The second point was proven by several meetings with both domain experts from Škoda Auto Mea-
surement Laboratories and Diribet. Every version of our ontology was discussed in order to meet the
requirements and to be eligible for the future utilization. The following section presents the design
process.

2.1 Modeling the ontology

The guide [11] suggests enumerating all important terms in the given domain before we start the
designing phase. Table 1 summarizes all concepts and parameters from the machining and measuring
part as we presented in section 1.1.5. Concepts are general entities, parameters are numeric values
usually defining measure or construction settings.

The designing phase is divided into three consecutive stages that followed each other in time. Each
stage is extending the results of the previous stage. Naturally, we did not manage to design the
presented parts of the ontology on the first attempt; however, we present only the last version.

2.1.1 First stage

The core part of the machining process is a ternary relationship object — tool — NPV. [12] suggests
introducing a new concept representing a relation itself. Figure 3 illustrates four concepts (Object,
MachiningActivity, NPV, Tool) connected with three object properties (isMachinedBy, hasNPV,
hasTool).

An initial analysis of characteristics and elements revealed various specialized relations between (e.g.
characteristic position is derived from a circle or a cone; in other programs, it may be derived from

6

Figure 3: Core part of machining process

other elements or references), therefore, we decided to capture a general relations as shown in Fig.
4. There are four classes (Object, Characteristics, Element, Reference) and four object properties
(isDerivedFromReference, isDerivedFromElement, consistsOfElement, hasElement).

The proposed part in Figure 4 raises a question of whether the characteristic shouldn’t have a data
property capturing its value. After a debate with our colleagues, we decided not to include it, since
these values are already stored in Diribet’s statistical software.

2.1.2 Second stage

The first stage (2.1) represents core structures for manufacturing and measuring processes. In the
second stage, we define additional concepts representing the measuring process.

Figure 5 illustrates the fact that an element is measured and constructed with some settings, both
of them set in a measuring machine. Thus, we introduce three new concepts (MeasureSettings,
ConstructionSettings, MeasuringMachine) and five object properties (hasMeasureSettings, hasCon-
structionSettings, usesDataFromMeasureSettings, isMeasuredBy, isConstructedBy).

Both of the settings have their additional parameters (Fig. 6). MeasureSettings (Fig. 6a) is specified
by two concepts (MeasureMethod, MeasureStrategy) and their object properties (hasMeasureMethod,
hasMeasureStrategy). The rest are data properties (hasSpeed, hasStep, hasDesiredPointCount, has-
ActualPointCount, hasMeasureTime, hasAngleRange). ConstructionSettings (Fig. 6b) is specified
by four concepts (FilteringMethod, FilterType, FilterSubtype, ConstructionMethod) and their object
properties (hasFilteringMethod, hasFilterType, hasFilterSubtype, hasConstructionMethod). The rest
are data properties (hasParameter, isEliminatingOutliers).

2.1.3 Third stage

The last stage extends the Tool class with a machining tool together with a nest and the MeasureSet-
tings class with a sensor and its carrier. Figure 7 depicts two new concepts (Nest, MachiningTool) and
two new object properties (isPartOfNest, isPartOfMachineTool). Similarly, MeasureSettings class is

7

Figure 4: Relation between characteristic, element, reference, and object

Figure 5: Construction and measure settings with a measuring machine

8

Figure 6: Parameters of measure and construction settings

Figure 7: Tool, nest, and machine tool

9

Figure 8: Sensor and sensor carrier

extended by two new concepts (Sensor, SensorCarrier) and two new object properties (isMeasured-
BySensor, hasSensorCarrier).

Finally, an overview of the entire ontology is illustrated in Fig. 9.

3 Implementation

This chapter presents an implementation stage of the work. We first introduce a Semantic web in
section 3, Semantic web technologies are presented in section 3.1, ontology APIs used in the SkodaOnto
are overviewed in section 3.2.4. Finally, section 3.3.2 presents the architecture and implementation of
the application.

3.1 Semantic web

First, we introduce the term Semantic web. The Semantic Web is an extension of the World Wide Web
made in a machine-readable way, i.e., with the ability to let computers process the web’s semantics.
Users interact with the web through agents solving tasks for them. Languages for knowledge repre-
sentation, such as eXtensible Markup Language (XML) or Resource Description Framework (RDF)
captures the data and semantics. XML by adding the structure of the data, while RDF links things,
identified by Universal Resource Identifier (URI), together enabling searching for related things. On-
tologies, in the area of the Semantic Web, are collections of information formally defining relations
among terms. They involve taxonomies for class and relation definition and inference rules for infer-
ring implicit information. Therefore, an ontology in the Semantic Web can be viewed as a vocabulary
to let the computer “understand” the web’s semantics. Digital signatures let agents verify trusted
sources to deliver reliable results [1].

Technologies and languages, such as XML or RDF, mentioned above are only subsections building
the Semantic Web. The following text presents the architecture of the Semantic Web and introduces
the essential components related to ontologies.

10

Figure 9: Overview of the ontology

3.2 Semantic web stack

As illustrated in Fig. 10, a semantic web stack is an architecture depicting the hierarchy of languages
and concepts used in the Semantic Web. The model is built on layers where each layer exploits the
layers below. The layers from the bottom of the stack up to the ontology layer are W3C4 standards
and are most relevant to this work. The following subsections present these layers.

3.2.1 RDF

The Resource Description Framework (RDF) is a W3C recommendation for representing information.
The core structure of RDF is an RDF triple taking the form of subject — predicate — object. A set
of RDF triples forms an RDF graph. A graph parallel to an RDF triple is a node — edge — node,
where both subject and object are nodes, and the predicate is a directed edge. The subject can be
either an IRI (Internationalized Resource Identifier) or a blank node (anonymous). An object is one
of an IRI, a blank node, or a literal. The predicate is the IRI which is a generalized version of URI
allowing usage of a broader range of Unicode5 characters. The blank node is a local identifier missing
the RDF syntax. The literal is a value for representing strings, numbers, dates, etc [3].

4https://www.w3.org/
5https://home.unicode.org/about-unicode/

11

https://www.w3.org/
https://home.unicode.org/about-unicode/

Figure 10: Architecture of semantic web

12

3.2.2 RDFS

The RDF Schema (RDFS) is a semantic extension of RDF (3.2) recommended by W3C. The semantics
are added by grouping resources, defining relations, and inferencing the data. This class and property
system is similar to object-oriented languages; however, instead of defining properties as attributes
(OOP way), RDFS defines property as a relation between resources. RDFS groups resources into
class constructs and enables class inheritance. Properties link subject and object resources. The
domain and the range modifiers of the property specify the class of instance that participates in a
given property. The inheritance of properties is possible through the sub-property construct [2].

3.2.3 OWL

The Web Ontology Language (OWL) enriches the lower layers of the semantic web stack with class
and property extension, including class relations, cardinalities, equalities, richer typing and character-
istics of properties, and enumerated classes. OWL brings three sub-languages, OWL Lite, OWL DL,
and OWL Full. The OWL Lite offers a classification hierarchy and simple constraints. The cardinality
constraints are, however, limited only for 0 or 1 values. The OWL DL provides maximum expressive-
ness while preserving computational completeness and decidability. The DL attribute signifies the
Description Logics (DL) acting as a building theory for OWL. Finally, the OWL Full extends the Lite
and the DL version for the price of losing computational guarantees. Hence the reasoning may not
be fully supported by reasoning software [7].

3.2.4 SPARQL

SPARQL Protocol and RDF Query Language (recursive acronym SPARQL) is a W3C recommen-
dation for querying RDF data. As mentioned in subsection 3.2, RDF represents a directed labeled
graph; thus, SPARQL searches for data via graph patterns. A graph pattern is a set of triple patterns
similar to RDF triples, except one of the subject, predicate, or object may be a variable. SPARQL
matches RDF subgraphs via these patterns and results in a set or RDF subgraph. SPARQL offers four
query forms, particularly SELECT — returns a set of variables specified in a query, CONSTRUCT
— returns an RDF graph specified by a graph template, ASK — returns a boolean value indicating
whether a graph pattern matches or not, and DESCRIBE — returns an RDF graph describing re-
sources found. Moreover, a set results of the SELECT and the ASK queries are serializable into one of
JSON6, XML7, CSV8, or TSV9 format. Additional query clauses like WHERE (specifies graph pat-
tern), DISTINCT (filters duplicate solutions), PREFIX (specifies namespace), or FILTER (restricts
the output of the query) provides a further modification of queries [4].

3.3 Ontology APIs

When building an ontology, one can choose from several ontology editors (Protégé, NeOn Toolkit,
SWOOP, etc.) to assist the development process. Although these editors provide high-level user-
friendly graphical interfaces, non-of them can convert data provided in the Škoda Auto use-case.
Therefore, the data must be processed and then exposed for utilization programmatically. We decided

6https://www.json.org/json-en.html
7https://www.w3.org/standards/xml/core
8https://en.wikipedia.org/wiki/Comma-separated_values
9https://en.wikipedia.org/wiki/Tab-separated_values

13

https://www.json.org/json-en.html
https://www.w3.org/standards/xml/core
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values

to use two programming interfaces for reusability and further utilization of the SkodaOnto. The
SkodaOnto TBox and ABox implementation are achieved via the OWL API [5]. Querying the data
stored in the knowledge base is managed using the Owlready2 package [8].

3.3.1 OWL API

OWL API is a Java interface for creating and manipulating OWL ontologies. It is accessible as an
open-source project under an LGPL license with various applications, including Protégé or Pellet
reasoner. According to the number of downloads (over 34,000 in 2011), the popularity in the soft-
ware community is remarkable. The design of OWL API presumes ontology as a set of axioms and
annotations. The interface OWLOntologyManager is responsible for creating, loading, saving, chang-
ing, and saving ontologies instantiated as the OWLOntology holding instances of OWLAxiom class.
Despite the lack of SPARQL querying, some essential query support is provided via the OWLRea-
soner interface that further supports consistency checking, class/property hierarchy computation, and
entailment of axioms. The API supports serialization and deserialization in the RDF/XML, Turtle,
OWL/XML, OWL Functional Syntax, The Manchester OWL Syntax, KRSS Syntax, and the OBO
flat file format [5].

We chose OWL API because of its high level of abstraction, independence from concrete serialization,
reasoner support, and easy-to-use interface. Disadvantages of using OWL API are its lack of SPARQL
(3.2.3) support and its high verbosity. The usage of OWL API is presented in section 3.3.2.

3.3.2 Owlready2

Owlready2 is a Python package providing ontology-oriented programming. In contrast to OWL API,
Owlready2 offers transparent access to OWL ontologies by treating OWL classes as standard Python
classes. Most of the OWL constructs, including classes, individuals, properties, datatypes, class
expressions, etc., are expressible in Owlready2. Since Python offers object-oriented programming, the
dot notation has a wide range of usage, namely, access to entities, access and modification of properties
and annotations of entities; access and modification of domain, range, and inverse of properties; and
for access and modification of role-fillers (constraints of properties including individuals). Owlready2
provides a native SPARQL engine supporting sufficient constructs for querying. Loading ontologies
expects one of NTriples, RDF/XML, or OWL/XML syntaxes. Exporting is available in NTriples and
RDF/XML syntaxes. The reasoning procedure is performed via the HermiT reasoner [8].

Advantages of choosing Owlready2 are: first, Owlready2 represents a simple and easy-to-use interface;
second, the required SPARQL support; and third, since the ontology will be used often by Python
modules, Owlready2 overcomes language incompatibility.

3.4 Architecture of the application

Figure 11 illustrates the intended usage of our application (SkodaOnto). The application loads the
data (currently as a .xlsx table) and outputs the knowledge base. The Python module loads the
knowledge directly as a file or can be fetched remotely in future versions.

Figure 12 captures the architecture of the SkodaOnto application. The application is written in Java
and is responsible for the creation of SkodaOnto ontology (SkodaOnto class) and successive creation

14

Figure 11: Usage of app

of individuals from the provided dataset (DataLoader class). The application outputs two files —
knowledge_base.owl and knowledge_base.ttl representing our knowledge base.

3.4.1 Defining the ontology

The SkodaOnto class defines the TBox and provides methods for ABox assertions. The class composes
an AbstractXlsxLoader, which is responsible for the reading of the data and the TBox assertions calls.
The following paragraphs briefly summarize the features of SkodaOnto class.

The base IRI of the SkodaOnto is “https://skoda-onto.com”. Since the ontology currently represents
one type of engine head, it will be necessary to introduce new namespaces for other engine head types
such as “https://skoda-onto.com/type1”, “https://skoda-onto.com/type2”, etc. in future versions.

Manager, ontology and df references OWL API objects. The manager creates and saves ontology
that holds all owl axioms. The df (data factory) creates OWL API objects in a defineClasses(),
defineObjectProperties() and defineDataProperties() methods.

Instead of having these objects as class attributes, we decided to use three hash maps (classes, ob-
jectProperties and dataProperties) for storing all the class and property objects created by the df.
Storing objects in hash maps improves the code readability and transparency for the price of a slightly
longer access time of objects. Objects can be retrieved by the same identifier as they are defined in
the SkodaOnto.

Class and property identifiers are defined in the ID inner class. This class holds string identifiers used
in the ontology and for retrieving objects from the hash maps.

Besides that, SkodaOnto class exposes methods for individual assertions. These methods and their
helper methods are not shown in the class diagram due to their amount.

3.4.2 Defining individuals

Before we describe the process of asserting individuals, it is appropriate to introduce the provided
data by Škoda Auto. The data form a table (XLSX format10) constructed by joining several other
tables and resources. For illustration, one of the resources is a TSV11 file exported from a Zeiss
Calypso12 metrology software. These tables and resources were manually processed by a colleague
from Škoda Auto. If we take into account the time needed for constructing the final table multiplied
by the number of engine head types, a huge effort needs to be made to cover the whole operation
30 (1.2). Thus, future versions of SkodaOnto will load individuals using a standard data exchange

10https://en.wikipedia.org/wiki/Office_Open_XML
11https://en.wikipedia.org/wiki/Tab-separated_values
12https://www.zeiss.com/metrology/products/software/calypso-overview/calypso.html

15

knowledge_base.owl
knowledge_base.ttl
https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/Tab-separated_values
https://www.zeiss.com/metrology/products/software/calypso-overview/calypso.html

Figure 12: Class diagram

16

Figure 13: Simplified structure of the table

format JSON, as was promised by Škoda Auto. Figure 13 shows a simplified version of the final table.
Unfortunately, real values are anonymized due to Škoda Auto’s policy for internal data sharing. Figure
13 outlines the header of the table and the structure of NPV, Tool, and Object columns. The full
table is attached as the data.xlsx file.

Assertions of individuals are managed by DataLoader class. The class extends AbstractXlsxLoader
class that acts as a base class for loading data in XLSX format. Abstract class contains a mechanism
for loading a spreadsheet file and interacting with it, such as getting merged cells in a given column
or indexing a column by its name. It also declares abstract methods that should be implemented in
a specific loader. Apache POI13 API manages manipulation of the XLSX file.

The most interesting part of the loader is asserting the ternary relationship npv — tool — object
(the ternary relationship is described in subsection 2.1). Figure 13 depicts relations between these
concepts as orange arrows. For example, npv2 is set to these tools: tool1, tool3, and tool4; tool1
machines objects obj3, obj4, obj5, and obj1; however obj1 is machined only when npv1is set and
objects 3,4,and5 are machined when npv2 and npv3 are set. There are three characteristics measured
on obj1, namely position_obj1, straightness_obj1, and angle_obj1. Characteristic angle_obj1
is derived from elements plane_obj1 and plane_obj2 and from reference std_coord_system. If we
imagine relations between NPVs, tools and objects as tree structures (orange arrows), each unique
path from the root to the leaf forms the ternary relationship. This assertion is achieved via recursive
method initializeNPVToolObject implemented in the DataLoader class.

13https://poi.apache.org/

17

npv2
tool1
tool3
tool4
tool1
obj3
obj4
obj5
obj1
obj1
npv1
i
3, 4, and 5
npv2
npv3
obj1
position_obj1
straightness_obj1
angle_obj1
angle_obj1
plane_obj1
plane_obj2
std_coord_system
initializeNPVToolObject
DataLoader
https://poi.apache.org/

References

[1] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: A new form of web content
that is meaningful to computers will unleash a revolution of new possibilities. ScientificAmeri-
can.com, 05 2001.

[2] Dan Brickley, R.V. Guha, and Brian McBride. Rdf schema 1.1 w3c recommendation 25 february
2014, Feb 2014.

[3] Richard Cyganiak, David Wood, Markus Lanthaler, Graham Klyne, Jeremy J. Carroll, and Brian
McBride. Rdf 1.1 concepts and abstract syntax w3c recommendation 25 february 2014, Feb 2014.

[4] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. Sparql 1.1 query language w3c recom-
mendation 21 march 2013, Mar 2013.

[5] Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl ontologies. Semantic
Web, 2(1):11–21, 2011.

[6] Petr Juza. Formal representation of quality inspection process. Bachelor Thesis, 02 2023. Czech
Technical University in Prague.

[7] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language overview w3c
recommendation 10 february 2004, Feb 2004.

[8] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python with automatic clas-
sification and high level constructs for biomedical ontologies. Artificial Intelligence in Medicine,
80, 08 2017.

[9] Martin Macas, Diem H. Nguyen, and Charlotte Panuskova. Support vector machines for control
of multimodal processes. In Ajith Abraham, Andries Engelbrecht, Fabio Scotti, Niketa Gandhi,
Pooja Manghirmalani Mishra, Giancarlo Fortino, Virgilijus Sakalauskas, and Sabri Pllana, edi-
tors, Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition
(SoCPaR 2021), pages 384–393, Cham, 2022. Springer International Publishing.

[10] Douglas C Montgomery. Introduction to statistical quality control. JohnWiley & Sons, Chichester,
England, 6 edition, July 2008.

[11] N. Noy and Deborah Mcguinness. Ontology development 101: A guide to creating your first
ontology. Knowledge Systems Laboratory, 32, 01 2001.

[12] Natasha Noy and Alan Rector. Defining n-ary relations on the semantic web, Apr 2006.

[13] Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Sup-
port vector method for novelty detection. volume 12, pages 582–588, 01 1999.

[14] Jan Urban, Libor Beranek, Michal Koptǐs, Jan Šimota, and Ondřej Košťák. Influence of cmm
scanning speed and inspected feature size on an accuracy of size and form measurement. Manu-
facturing Technology, 20:538–544, 12 2020.

18

	_TN01000024_07_V45_uvod
	Report_SkodaOnto
	Quality inspection use case
	Quality control loop
	Process
	Measurement
	Out of control state detection
	Assignable cause finding
	Selection of control action

	Engine head manufacturing and inspection
	Machining Part
	Measuring Part

	Proposal of ontology
	Modeling the ontology
	First stage
	Second stage
	Third stage

	Implementation
	Semantic web
	Semantic web stack
	RDF
	RDFS
	OWL
	SPARQL

	Ontology APIs
	OWL API
	Owlready2

	Architecture of the application
	Defining the ontology
	Defining individuals

