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Abstract

First the notion of the heuristic and its importance for automatic theo-
rem proving is explained. The question of how to construct a useful system
of heuristics and notions is posed, and it is argued for the importance of
learning. A simple example of learning a lemma is shown using the Induc-
tive Logic Programming system Progol.
Second a general framework for learning heuristics is discussed and the

proof checking system Mizar providing a large body of mathematics is
found suitable to learn upon. The process of modifying Mizar for use with
Progol is shortly described, e.g. turning the mathematical texts to Prolog
structures, creating initial notions, creating the initial base of rules from
theorems and definitions, preparing proofs for learning, and problems with
polymorphism.
Finally first experiments in this environment are described, which in-

clude learning the notion of atomic formula and learning how to use initial
rules in the proof of Rolle’s theorem.
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1 Automatic Theorem Proving and Heuristics

This section should shortly explain the notion of heuristic, its importance for
automatic theorem proving (ATP), and it is the motivation for the work described
in next sections.
It is well known, that one of the main problems of ATP algorithms is their com-

putational complexity ( also combinatorial explosion ). In resolution based the-
orem provers this happens when the empty clause is not derived quickly enough
and the prover keeps generating new clauses over and over, until the amount of
possible resolutions is intractable.
There are various methods how to guide resolution steps (e.g. which clauses

should be taken to be resolved upon), generally called uniform proof procedures
( see [Chang and Lee 73] ), because they can be used for proving theorems in
any axiomatic theory without any domain specific knowledge. Many people (
e.g. [Bundy 83] ) think that provers based only on resolution are insufficient for
proving theorems in more complex areas ( e.g. calculus ).
One of the methods which try to cope with such problems is looking at the

way people solve them and trying to implement human methods in AI algo-
rithms. An example of using this method is Lenat’s Artificial Mathematician
described in [Lenat 78], where system of heuristics derived from human behavior
does mathematical explorations.
Similarly, we can look at the way people prove theorems and try to extract

some heuristics for use in ATP. Here by heuristic we mean some rule, method or
experience which tells us what to do in some situation, it does not need to be
perfectly true . . . e.g. it suffices that it often helps us, and it does not need to be
precisely formulated in some well defined notions, on the contrary, it often uses
vague notions (e.g. ’similarity’ ).
Some examples of heuristics used in mathematics are:

in Logic: ’Proving something for all formulas is often done by induction on
the complexity of formula’

in Calculus: ’It has usually little sense to think about the inner structure of a
real number as a set’

in Set Theory: ’Try some diagonalization’

The system of heuristics we use is probably quite complicated, e.g. sometimes we
try to prove something using some method, then we see it is a road to nowhere
and think why the previous method failed, and on the basis of it try another
method. So we have not only heuristics formulated in the language of its domain
theory, but also heuristics formulated by means of other heuristics and results of
their application, e.g.
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’There is no sense in applying some rule ’R’ and immediately after it applying
the rule inverse to ’R’ ’

or

’Try substituting ǫ for δ, and if the result is 2ǫ, try substituting ǫ/2’

In my opinion, the quality of a theorem prover depends immediately on the set
of heuristics that its authors recognize, and on the way they link them together
and add to some standard proving techniques such as resolution. So it seems we
should be interested in the question how to find heuristics, and more generally
a sufficiently large system of heuristics, that would give us recommendations for
theorem proving similar to those of human.

2 Finding Heuristics, Learning

The most straightforward way of creating heuristics seems to be simply thinking
of them and typing them in. It corresponds to teaching done completely by
explanation, i.e. we have to provide definition for every notion our heuristics use,
define many relations among heuristics, and worse of all, try to find them all on
all levels ( e.g. heuristics about using heuristics, etc. ).
There is probably some redundancy in this method, because there surely are

some heuristics about finding heuristics, so why not let them find the rest for
us. I think ’learning from examples’ could be a (meta)heuristic of this kind and
in this work experiments are carried out to find out what is possible to discover
using this heuristic.
The reason for trying this heuristic comes again from comparison with hu-

mans. When we learn mathematics, it often has the form of watching some
theory being developed, i.e. watching some necessary notions being defined, the-
orems about them being proved and maybe some interesting examples of applying
the theory being shown. In this framework there is often very little said about
the motivation for defining exactly the notions defined, and leading the proofs of
theorems exactly the way it was done. Yet after some time we are able to produce
some proofs ourselves or define and explore interesting notions ourselves, we not
only remember what was shown to us, but also know heuristics telling us whether
something is interesting or not and what to do when we want to prove something.
In my opinion this is ( at least partly ) caused by our ability to generalise

what we are shown to some useful heuristics or vague notions in which we actually
think. This generalisation happens often quite spontaneously, e.g. many people
when firstly shown the notion of continuous real function would guess it would
also mean differentiability, or when shown several proofs in calculus and group
theory they would be able to speak about the most striking differences between
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the two theories.
So in order to gain some heuristics, we would like to simulate this process

of generalising examples in computer. There are various approaches to the task
of machine learning and many systems implementing them, the most convenient
for the specific task of learning heuristics seemed to me to be the Progol system
[Muggleton 95, Roberts 97] coming from the field of Inductive Logic Program-
ming.

3 Progol, Simple Example of Learning a Rule

from Examples of Its Use

3.1 Progol

Progol is a Prolog interpreter enhanced by predicates that enable learning. Progol
tries to generalise examples given to it to some Prolog clauses whose form we
determine by special mode predicates, so the method implemented here is called
Mode-Directed Inverse Entailment.
The quickest way of showing how to learn something using Progol is probably

running through some example, here the example of learning classification of
animals which is distributed together with Progol is chosen.
In this example we want to learn definitions of animal classes such as mam-

mals or birds, from some positive examples such as

class(eagle,bird). class(bat,mammal). class(dog,mammal).

and some background knowledge such as

has legs(eagle,2). has legs(bat,2). has legs(dog,4). has milk(bat). has milk(dog).

So we want to learn clauses of the form e.g. class(A,mammal):- has milk(A)
. We specify the required form of output clauses by predicates modeh/2 and
modeb/2, where we determine which predicates can occur in the head and in the
body of output clauses. Here these declarations would look something like

:-modeh(1,class(+animal,#class))?
:-modeb(1,has legs(+animal,#nat))?
:-modeb(1,has milk(+animal))?

The first clause says that the output clause should have predicate class/2 in
its head with first term being a variable of type animal and the second term
being a constant of type class. The two following clauses say that in the body we
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allow one occurence of the predicate has legs/2 and one occurence of the predi-
cate has milk/1. The types used in these declarations have to be defined, here it
would be e.g.

animal(eagle). animal(bat). animal(dog). class(bird). class(mammal).

The synbol ′+′ in the mode declarations specifies we want the term to be a vari-
able ( exactly an input variable), while the symbol ′#′ means we want the term
to be a constant. The third possibility is ′−′, which represents output variable.
We should also set some parameters influencing the learning process (e.g. how

complex hypotheses Progol creates ). If everything goes well, Progol really gen-
eralizes our examples and produces clauses like

class(A,mammal):-has milk(A).

3.2 Simple Example of Learning a Rule from Examples of

Its Use

The first thing we would like to know when thinking about finding heuristics or
interesting notions by machine learning is whether it is possible at all, at least in
some simple case.
In the first experiment, a simple lemma (exactly a definition) sub(x,y)=x+(-y)

was learned from examples where this lemma was used and some counterexam-
ples. Here the simplification is that

• we know beforehand what we learn and can supply additional examples
or counterexamples as well as adjust parameters for learning to obtain the
right result

• the learned lemma is not a heuristic defined in possibly vague notions, we
can constrain the search to mathematical expressions

• the background knowledge used in the learning did not go too much in
detail, thus the learned clauses would have some drawbacks.

The positive examples for this learning were produced using the IMPS (Interac-
tive Mathematical Proving System). Several mathematical expressions containing
the term sub(. . .,. . .) (e.g. sub(x∗z, z∗x) = 0 ) were typed in and IMPS rewrote
them using our lemma, so the rewritten expressions would instead of the term
sub(. . .,. . .) contain terms like (. . .)+(-(. . .)) (e.g. (x ∗ z) + (−(z ∗ x)) = 0 ).
The pairs [expression before rewriting, expression after rewriting] were given

to Progol as examples of the predicate similar/2 and some counterexamples were
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added. We would like Progol to find what all these examples have in common.
That’s why the predicate gener/2 was defined, where gener(A,B) should stand
for ’A unifies (in the sense of IMPS) with some term in B’. Following previous
example,

gener(sub(x, y), sub(x ∗ z, z ∗ x) = 0)

would be true, because sub(x, y) unifies with the term sub(x ∗ z, z ∗ x) 1. Given
these examples and definitions, we can use mode declarations to specify the exact
form of the clause searched for:

modeh(1,similar(+expr,+expr))?
modeb(2,gener(#expr,+expr))?

This says in the head there should be something like similar(A,B), while in the
body we allow two occurences of the predicate gener/2 each of them having a
constant term as a first argument. What we hope for is that the outcome will be
the clause

similar(A,B) : −gener(sub(x, y), A), gener(x+ (−y), B).

which means in all examples the expression before rewriting contains a term gen-
eralised by sub(x, y) and the exprression after rewriting contains a term gener-
alised by x+ (−y), and in which the learned lemma is already apparent.
Of course, we could impose some stronger conditions, e.g. we could require

in each pair that the generalisation in both expressions occurs at the same po-
sition. I think it is not necessary, because when there is a lot of examples and
counterexamples then there is a good chance that the wrong hypotheses will not
succeed in generalising them.
The real simplification that took place in defining predicate gener/2 was that

only one ’generalising variable’ (e.g. ’x’) was allowed. You can genaralise any
term by a variable, but when learning, this variable will always be ’x’. I think it
would be possible to correct this drawback, but it would be necessary to remember
somehow that ’x’ is already bound to some term, and always check whether a
new term is already generalised by some variable.
So the clause Progol actually learned differs from above in that instead of two

variables ’x’,’y’, it contains only one variable ’x’:

similar(A,B) : −gener(sub(x, x), A), gener(x+ (−x), B).

This is what it really looks like when the λ-calculus notation of IMPS turned to
lists is used:
1The notation here is simplified in that IMPS uses λ-calculus and IMPS expressions were

turned to lists for use in Progol.
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similar(A,B) :-

gener([[apply-operator,[sub,[rr,rr,rr]],[x,rr],[x,rr]],rr],A),

gener([[apply-operator,[[lambda,[[rr,x,y]],[[apply-operator,

[+,[rr,rr,rr]],[[apply-operator,[-,[rr,rr]],[y,rr]],rr],

[x,rr]],rr]],[rr,rr,rr]],[x,rr],[x,rr]],rr],B).

This learning used five examples and two counterexamples and took about 4
seconds on P133.

4 A Framework for Larger Experiments

In my opinion the previous example shows that in principle it is possible to find
in mathematical texts some knowledge that is not explicitly presented there, it
is implicit or hidden ( . . . sort of kabbalah ).
Finding some nontrivial and useful heuristics in some larger text is certainly

going to be harder, because

• we will have to learn how to choose from a larger text some parts that
are suspect to have something in common ( so that we could do some
generalisation on them )

• the heuristics we know use a language that differs from that of mathematics,
e.g. it contains notions like similarity, inverse rule, induction, triviality,
heuristic, integral, theorem of calculus, etc, and in the beginning, we do
not know definitions of these notions.

I think that the two problems of finding heuristics and finding notions that
heuristics use should be solved in the same time. It may happen, that some
conditions will occur quite often in the definitions of the heuristics found so far,
e.g. it may turn out that some group of lemmas is used to some expression only
when it contains some typical functions or predicates. We can then give some
name to this kind of expression, e.g. ’integral’, or ’expression of set theory’, store
their definition in lower notions somewhere ( e.g. ’predicate symbols(X,[ǫ])’ for
X being an ’expression of set theory’ ), and use them for finding more complex
heuristics.
So when we want to try finding heuristics and their language, we should have

• some mathematical texts, where we will search for the heuristics and their
notions

• some basic notions that describe these texts (e.g. knowing that ′ǫ′ is a
predicate symbol comes in handy )

• some system that should enable us to choose and prepare parts of the
mathematical texts for learning
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• a learning system . . . here it is Progol

So far we often used comparison with human thinking as a method telling us
what to do next. If we want to continue using this method, the mathematical
texts we learn upon should be as similar to human textbooks as possible. On the
other hand, a genuine textbooks already contain great deal of natural language
and vague notions and it would be hard even to construct some set of initial
notions describing the structure of the texts (e.g. telling the computer what is a
theorem or proof or even a correct proof).
It follows that we are looking for mathematical texts that are formalised in

some way, but at the same time they are as close to human mathematics as
possible. I finally chose the MIZAR system, which will be now shortly described.

5 The MIZAR system

The MIZAR system [Rudnicky 92] is an outcome of a project started in Poland
in 1973. In this project a syntax for writing mathematical articles was developed
and many articles were written using this syntax. The syntax was created to
comply with two major requirements:

• it should make computer checking of the correctness of articles possible

• it should resemble human mathematics as much as possible, thus making
it easier for the mathematicians to write their articles in this form

So the distribution of the MIZAR system (found on internet) consists of two
parts, the system checking the correctness of newly written articles and about
500 articles from various fields of mathematics that were already checked and
approved to be in the distribution. The articles not only have some informative
value, they also enable us to use notions defined or theorems proved in them,
thus making writing new articles in more complex fields quite easy.
Here some parts of the article about sets are shown:

:: Some Basic Properties of Sets

:: by Czes{\l}aw Byli\’nski

environ

vocabulary BOOLE,FAM_OP;

theorems TARSKI,BOOLE,ENUMSET1;

begin

reserve v,x,x1,x2,y,y1,y2,z for Any;

Th12:

{x} c= X iff x ∈ X

proof
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thus {x} c= X implies x ∈ X

proof x ∈ {x} by TARSKI:def 1; hence thesis; end;

assume

A1: x ∈ X;

let y;

thus thesis by A1,TARSKI:def 1;

end;

definition let X1,X2;

func [: X1,X2 :] means

:Def1: z ∈ it iff ex x,y st x ∈ X1 & y ∈ X2 & z = [x,y];

....

Articles consist of keywords, e.g. environ, reserve, theorem, proof, definition,
thus, hence , comments, initial declarations ( names of articles we will refer
to), reservation of variables for certain types ( here the type Any means set ),
theorems, definitions, schemes and auxiliary items. Auxiliary items often have
the same form as theorems, Th12 is of this kind, it is some lemma with proof.
The definition shown is the beginning of the definition of cartesian product, after
the defining formula there should be some proofs of correctness of this definition.
The structure of schemes is similar to that of theorems, but they usually contain
some quantification of a predicate or function of some type.
The meaning of keywords is quite similar to their meaning in English and the

syntax allows us to write the proofs in quite a common way, e.g. it is possible
to prove some part by contradiction or to introduce in the course of proof some
lemma and give a proof of it. Each article can define its own notation, so one
symbol can have different meanings in differrent articles, and even in one article
a symbol can have different meanings, e.g. when it is a function or predicate
defined in a differrent way for various types.

6 Preparing MIZAR for Learning

It was necessary for the task of learning to make MIZAR articles at least to
some extent understandable for Progol. Firstly some initial notions describing
the articles were created and then some more complicated predicates were written
and initial base of rules created, which made proof analysis possible.

6.1 Creating Initial Notions, Turning MIZAR Texts to

Prolog Structures

Here the syntax of the MIZAR language in definite clauses found on the home
page of the MIZAR project was of great help. Definite clauses such as
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Atomic-Formula-Expression =

Term-Expression-List Predicate-Symbol Term-Expression-List

were turned to Prolog predicates about recursive lists such as

atomic formula expression([A,B,C]) :-

term expression list(A), predicate symbol(B), term expression list(C).

Similar predicates working basically on the principle of differential lists were
used for parsing the linear text of articles to recursive lists, e.g. here it would
look like

atomic formula expression(V0,V,[A,B,C]) :-

term expression list(V0,V1,A), predicate symbol(V1,V2,B), term expression list(V2,V,C).

In fact, this process was quite complicated, because using only the method of
differential lists would often be very inefficient and parsing the terms and formu-
las requires some additional knowledge (e.g. priorities of symbols), that can be
for each article different.

6.2 Problems with Polymorphism

In MIZAR there are many types, and many functions and predicates have differ-
ent definitions for different types, and sometimes it is quite complicated to tell
exactly which definition was used (e.g. function defined for some type may be
used to a more special type, however when definition for the more special type
exists, it should be used, etc ).
This seemes to be quite unsuitable for some possible learning in Progol, be-

cause only to be sure we understand some term or formula correctly, we would
have to include all that polymorphism resolving machinery in the background
knowledge, slowing down the actual learning.
So an attempt was made to get rid of the polymorphism, basically by number-

ing all different meanings of functions, predicates and types, and preprocessing
the articles with a program which tries to guess the right meanings and adds the
corresponding numbers to symbols for functions, predicates and types.

6.3 Creating Initial Rules

If we want to analyse proofs, we should be able to apply some lemma or theorem
in some proof situation. That is why applicable rules were constructed from the
theorems, definitions and schemes in MIZAR articles.
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It is easy to create a rule from a theorem of the form ’A implies B’. It al-
ready is a rule, applicable in case we want to prove an instance of ’B’, changing
it to an instance of ’A’. More generally, when we want to prove a disjunction
∨
{A1, . . . , An} and we know that disjunction

∨
{B1, . . . , Bm} is true, the algo-

rithm is:

1. find the intersection2 {C1, . . . , Cl} = {A1, . . . , An} ∩ {B1, . . . , Bm}

2. if this intersection is empty, then
∨
{B1, . . . , Bm} is not applicable

3. else let {D1, . . . , Dm−l} = {B1, . . . , Bm}\{C1, . . . , Cl} , the proof of
∨
{A1, . . . , An}

is reduced to the proof of
∧
{¬D1, . . . ,¬Dm−l}

for if none of Di is true, some Cj must hold ( because
∨
{B1, . . . , Bm} is true)

and consequently
∨
{A1, . . . , An} holds.

So theorems from MIZAR articles were converted to conjunction of disjunc-
tions, and each disjunction was taken to be an initial rule ( it means usually more
than one rule were created from a theorem). Basically the same was done with
schemes and definitions, definitions first being turned to equivalences.
The problem here arises if existential quantification is present in some theo-

rem, scheme or definition. MIZAR does not require some skolemization, in the
course of proof special ’reasoning items’ are used to handle existential quantifica-
tion. That is why the parts of formulas beginning with existential quantifier were
left intact, and the plan is to use similar reasoning items for their eliminating as
MIZAR does.

6.4 Preparing Proofs for Learning

The MIZAR proofs consist of various reasoning items. These items in most cases
modify the thesis. At the start of a proof the thesis is simply the theorem being
proved, and the proof is finished when there is nothing else to prove, i.e. the
thesis is empty.
The problem is, that the current thesis is apparent only at the beginning and

at the end of the proof, and if we would like to know the thesis somewhere in
the middle of the proof, we would have to run through all reasoning items from
the beginning to that point and apply them. It is quite inconvenient, because
we could want to learn e.g. why exactly some reasoning item was used at some
point of the proof, and for such learning knowing the form of the thesis at that
point is essential.
That is why a program which determines the thesis was written. Proofs are

before learning preprocessed with this program, and it usually adds the current
thesis to reasoning items and also numbers the reasoning items in a uniform way,
to facilitate orientation in the proof.

2more exactly: intersection up to an unification; this applies also to step 3.
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7 First Experiments with Learning

7.1 Learning the Notion of Atomic Formula

This experiment was done to try, whether under very favourable conditions it is
possible at all to learn some useful notion. It was carried out in an early stage of
preparing MIZAR texts for use with Progol, also with the purpose to get feedback
for further modification of MIZAR texts.
For this learning, the notion of ’atomic formula’ was chosen, and the task was

to learn this notion using some other initial notions (e.g. ’term’, ’identifier’, etc)
and some examples of this notion. The simplification here was:

• We know beforehand the notion we learn, only examples of this notion were
supplied ( together with some counterexamples)

• About 100 initial notions describing the texts were created from the MIZAR
syntax. It would be intractable to allow them all in the learning. On the
other hand, we have no heuristics yet, that could do the task of choosing the
most ’suspect’ initial notions, that should be allowed in the learning. That
is why I chose 8 ’suspect’ initial notions myself, and of course, among them
there were also the notions necessary for the definition of ’atomic formula’
(i.e. term list and predicate)

The examples of atomic formulas were created by choosing all atomic formulas in
the proof of Rolle’s theorem. There were about sixty of them, one counterexample
was added. In this early stage of modifying MIZAR articles, differential lists were
used instead of recursive lists, i.e. an example of atomic formula would look like

f_e([f1,’.’,x,’=’,f2,’.’,x,’+’,r],[])

where f e/2 stands for formula expression (although it should be atomic formula
expression), and f e(A,B) means ’append(C,B,A) holds, and C is an atomic for-
mula’. In all these examples the second argument was the empty list, so the
whole first argument is the atomic formula.
We want to learn the definition of the predicate f e/2, therefore the head

mode declaration is

:-modeh(1,f_e(+list,[]))?

The differential lists are quite unsuitable for working with recursive things such as
formulas or terms ( it is very inefficient), on the other hand here this formalisation
makes writing the body mode declarations quite easy. here they have the form

:-modeb(3,term_expression(+list,-list))?

:-modeb(3,identifier(+list,-list))?

:-modeb(3,predicate_symbol(+list,-list))?

....
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It means Progol will construct hypotheses such as

f e(A, []) : −term expression(A,B), identifier(A,B), predicate symbol(B,C).

and it already is the kind of definition we are looking for.
The number 3 in the body mode declarations is quite arbitrary, it says that

the output clause should not contain more than three occurences of each of this
predicates. The more occurences we allow, the more complex will the search be,
so it is an attempt to balance the speed of the search with its generality.
The final learning used about 60 positive examples and 1 counterexample,

and on PC486/100MHz took (depending on parameter settings) from 50 to 100
seconds. It is very much, mainly because handling terms and formulas as differ-
rential lists was inefficient. All examples were generalised by the clause

f_e(A,[]):- term_expression(A,B), predicate(B,C), term_expression(C,D).

7.2 Learning How to Use Initial Rules in the Proof of

Rolle’s Theorem

One particular approach to learning heuristics is to learn on various proof sit-
uations ( described by the formula being proved, the special symbols in it, the
theory to which the formula belongs, etc.), the set of possible solutions of these
situations (i.e. the initial rules applicable to the formula being proved, or more
genarally the heuristics applicable to the proof situation) and the solution actually
used in the proof.
To put it more concretly, we could create from the MIZAR proofs triples

(1) [proof situation, its possible solutions, the solution actually used in the proof]

and try to generalise them.
In this setting, some of the heuristics already mentioned could be (at least

in principle) learnable, e.g. we could find out that if the proof situation has
attributes ’model theory’ and ’st. is being proved for the set of all formulas’, then
’induction on the complexity of formula’ is always in the set of possible solutions
and quite often it is also the solution actually used in the proof.
For the first learning in this setting, the situation was simplified in that

• as the set of possible solutions only the initial rules applicable to the formula
were taken (we do not know any higher heuristics yet)

• the description of proof situation was ommited. It means the examples for
learning will be only pairs

(2) [applicable initial rules,the rule actually used in the proof]
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In fact, the set of applicable rules describes the proof situation to some
extent, so the first two members in the triples (1) are in a simple way
described by the first member in the pairs (2).

The examples for this learning were obtained from the proof of Rolle’s the-
orem ( theorem ’Th1’ in the MIZAR article ’rolle.miz’ ). The reasoning items
of this proof (there are hundreds of them) were first preprocessed in the way
described in (6.4.), and from them only the items that have the form of self-
contained statements were chosen. Examples of such statements are

A0: p ≤ g by Z0;
A01: ].p,g.[ is open by RCOMP 1:25,Z0;

r/(n+2)<r by SQUARE 1:14;

C9: rng (h1+c) c= N1 proof ... end;

These items can be divided into three groups:

• items with a longer proof beginning with the keyword ’proof’ and ended
with the keyword ’end’ . . . the item C9 above

• items with a ’simple justification’ ( it is a list of references to other items,
theorems, schemes or definitions, from which the current item immediatelly
follows), that contain a reference to some other item in this proof . . . items
A0 and A01 above . . . they contain reference to the item Z0, which is some
assumption made previously in the proof

• items with a ’simple justification’ that contain only references to other the-
orems, schemes or definitions . . . the third item from above . . . contains
reference to theorem 14 in the article ’SQUARE 1.miz’

The simplest possibility was to choose only the third group for learning, where
still remains 54 items. Thus we may take into account only the theorems, schemes
and definitions previously proved, while if we wanted to use also the items from
the first and second group, we would have to consider also references to other
items or assumptions made in the proof, and the learning would have to be more
complicated.
There are 55 MIZAR theorems, definitions and schemes used in the proof of

this theorem (see Appendix A), and from them 90 initial rules were constructed.
For the learning only these 90 rules were allowed. Other possibility is e.g. to
allow all rules constructed or to allow all rules from the articles declared in the
environment declarations of the article ’rolle.miz’. But with both these possibili-
ties the learning would take very long time, because there are about 7000 initial
rules ( made from about 60 articles that were necessary for the article ’rolle.miz’
) and there are still thousands of rules in articles directly referenced in ’rolle.miz’.
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To create examples for learning, it was necessary for each of the 54 chosen
items to determine the set of applicable rules. It was done using the program
described in 6.3. The statistics of the results is in Appendix B ( this is no learning
yet). In this statistics, two things should be noticed and explained:

• Sometimes according to the original proof some rule should be used, but
my program for rule application said the rule was not applicable. This is
usually caused by the incompletness of the program for rule application
(e.g. the existential quantifiers are not handled properly yet).

• The number of possible applications of some rules is very high (thousands).
It happened because the rules of the form ’a=b’ were also allowed to be
used for rewriting the left hand side to the right hand side of the equation
and vice versa. In case one side of the equation is a variable, it unifies with
almost anything, and the rule is applicable many times in different ways.

Besides this statistics, the main result of running the program determining the
applicability of rules, are the 54 pairs [list of applicable rules, the rule actually
used in the proof] ( one for each of the chosen reasoning items). For example, the
pair

[[RCOMP_1:15,SQUARE:14,BOOLE:def8],RCOMP_1:15]

means that to prove one of the 54 reasoning items the theorem RCOMP 1:15
was used, but theorem SQUARE:14 and definition BOOLE:def8 were also appli-
cable.
In addition to these 54 positive examples, about 400 counterexamples were

created, taking the 54 lists of applicable rules ( the left hand sides of the pairs)
and for each list, all its members (except those in the positive examples) were
taken as a right hand side of the counterexample pairs. It means for the example
above we would create two counterexamples

[[RCOMP_1:15,SQUARE:14,BOOLE:def8],SQUARE:14]

[[RCOMP_1:15,SQUARE:14,BOOLE:def8],BOOLE:def8]

In this first experiment, positive examples ( denoted e.g. by predicate choose/2)
were generalised using the predicates p element/2, n p element/2 which have for
the initial rules the same meaning as member/2, not member/2. Two learnings
were carried out, in the first one the posistive and negative examples were as al-
ready described, while in the second one the positive and negative examples were
exchanged (i.e. there were about 400 positive examples and 54 counterexamples).
In both cases the mode declarations are

:-modeh(1,choose(+rule_list,#rule))?

:-modeb(20,p_element(#rule,+rule_list))?

:-modeb(2,n_p_element(#rule,+rule_list))?
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So we will learn clauses of the form

choose(A,SEQ 4:46) : - p element(A,SEQ 1:def8).

which in the first case means:

’If both SEQ 4:46, SEQ 1:def8 are applicable, then the rule SEQ 4:46 should be
used’

while in the second case the meaning is:

’If both SEQ 4:46, SEQ 1:def8 are applicable, then the rule SEQ 4:46 should not
be used’

7.2.1 Results of This Learning

In the first case the learning was quite unsuccesful, while in the second case the
results seem to be quite good. I think the reason is the ratio of positive and
negative examples.
In the first case the number of counterexamples was too high to allow good

generalisation (i.e. the closed world assumption used when they were created was
too strong). The 54 positive examples were generalised to 50 clauses, from which
only 18 were newly created definitions, while the rest were the original examples.
The second case is more interesting, the about 400 positive examples were

generalised to 140 clauses, only 34 of them were the original examples, while
the rest were newly created definitions. This learning took about 2,5 hour on
PC486/100MHz.
More than 100 newly created definitions are of the form

choose(A,REAL_1:33) :- p_element(NAT_1:38,A).

which in this case means that if both these rules are applicable, REAL 1:33 should
not be used. This form of the most of the newly created clauses tempts to think
of them as of defining something very similar to ordering of the initial rules used
in the proof (e.g. the previous clause would say REAL 1:33 < NAT 1:38). I tried
to analyse a little this “ordering”, to find out something about the results of this
learning.
For 24 rules3 of the 55 holds, that there is no “better” rule, which could be

(with some generalisation) interpreted as a hint to use these rules whenever they
are applicable. As early as we look at the first rule of these 24 . . . AXIOMS:13

3In Appendix A there is ’+’ before them
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. . . associtivity of ’+’, we realize, that either the learning set was too special or
our interpretation of the results is too general, because using associativity of ’+’
whenever it is possible is surely not the right way to prove theorems.
On the other hand, all of the three rules that are atomic formulas and do not

contain predicate ’=’ (i.e. NAT 1:18, NAT 1:21, RFUNCT 2:10) are among the
best 24. I think it corresponds to the fact that atomic formulas not containing
’=’ have in proving the meaning of ’facts’, used in the backchaining whenever
possible ( atomic formulas containing ’=’ can also be used for rewriting, that is
why most of them (7 of 8) are not among the 24).
Another quite expectable fact is that many of the “top 24” contain some

unusual (in relation to other rules) predicate or group of terms (e.g. ’diff(f,x0)’,
’f(Y)’, ’is constant on’, ’0≤y-x’, etc.).
On the other side of the scale there are six rules, that according to our inter-

pretation should be used only when no other rule is applicable. They are

FDIFF_1:def8, REAL_1:26, REAL_1:33, SEQ_2:2, SQUARE_1:14, TARSKI:def2

With the exception of REAL 1:24 all of them contain some expresion of the
form ’x=.. .’, the ’most applicable’ (according to statistics given in Appendix B)
rule TARSKI:def2 even containing two expressions of the form ’x=y’.
Finally I created for each rule the list of ’better’ rules. Here the 5 cases where

this list was of length 1 (i.e. the ’second best’ rules) were interesting. These pairs
( the second best, the better) are:

NAT_1:19 AXIOMS:13

RCOMP_1:11 RCOMP_1:6

RCOMP_1:15 BOOLE:8

REAL:39 SEQ_2:6

REAL_1:53 REAL_1:14

The rules in the first pair have nothing in common, those in the second pair
both contain the term ’[.g,s.]’, the rules in the third pair both contain the predi-
cate ’∈’, and the rule BOOLE:8 that contains more general terms at this predicate
is ’better’, in the fourth pair both rules contain the term ’x/y’ and atomic formula
not containing ’=’ is prefered, and in the last pair the rules contain terms x+y,
and the rule REAL 1:14 with the more special term ’x+ -y’ is prefered.
With the exception of the first pair, the rules in these pairs are somewhat

similar, they contain the same predicate or similar group of terms. It leads to
the conjecture, that rules which are close in the ’ordering’ found, are often close
also syntactically and applicable in similar situations.

8 Conclusions

The purpose of this work is to try to develop a system for finding useful notions
and heuristics for theorem proving. The method that is tried is to analyse the
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mathematical texts of the MIZAR system using the initial notions of MIZAR
syntax, the initial rules created from the MIZAR theorems and definitions, some
simple theorem proving predicates written in Prolog, and the Inductive Logic
Programming system Progol.
Three Progol learnings were described. The results of the first (learning a

rule from examples of its use) and the second one (learning the notion of atomic
formula) were previously known, they were carried out to check the feasibility
of this approach at least under very favourable conditions. The result of the
third and largest learning (how to use initial rules in the proof of Rolle’s theorem
) is a compression of about 400 examples taken from the proof to 140 clauses,
which when viewed as defining ordering of the initial rules give already some
meaningful heuristics, e.g. ’Choose atomic formula not containing ’=’ whenever
it is possible’.

9 Further Work

We could study the ’ordering’ further, but there is the danger that we will try
to find some deep relations in results of quite a superficial learning. The plan is
rather to try some less trivial learnings, e.g. to add some other attributes of proof
situations and to include the heuristics found so far (here it would be the ’order-
ing’ found) to the set of possible solutions, and in longer term to try automating
the process of succesive learnings to create some hierarchies of heuristics.
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Appendix A

The theorems and definitions used in the proof of Rolle’s theorem.

+AXIOMS 13 x+(y+z)=(x+y)+z.

AXIOMS 22 x ≤ y & y ≤ z implies x ≤ z;
+BOOLE 29 X c= Y & Y c= Z implies X c= Z;

BOOLE 8 x ∈ X U Y iff x ∈ X or x ∈ Y;
+FCONT 1 30 Y c= dom f & Y is compact & f is continuous on Y implies (f(Y)) is compact;

FCONT 1 def 2 pred f is continuous on X means X c= dom f & for x0 st x0 ∈ X holds f|X
is continuous in x0;

+FDIFF 1 16 f is differentiable on Z iff Z c=dom f & for x st x ∈ Z holds f
is differentiable in x;

+FDIFF 1 20 for f,x0 for N being Neighbourhood of x0 st f is differentiable in x0

& N c= dom f holds for h,c st rng c = {x0} & rng (h+c) c= N holds
h" (f.(h+c) - f.c) is convergent & diff(f,x0) = lim (h" (f.(h+c) - f.c));

FDIFF 1 30 Z c= dom f & f is constant on Z implies f is differentiable on Z & for x st

x ∈ Z holds (f‘3Z).x =0;
FDIFF 1 def 8 func f‘3X -> PartFunc of REAL,REAL means dom it = X & for x st x ∈ X holds

it.x = diff(f,x);

+FUNCT 1 102 y ∈ foX iff ex x st x ∈ dom f & x ∈ X & y = f.x;
+NAT 1 18 for k holds 0 ≤ k;
NAT 1 19 0 <> k implies 0 < k;

+NAT 1 21 0 <> k + 1;

+NAT 1 38 k < n + 1 iff k ≤ n;
+PARTFUN2 57 f is constant on X & Y c= X implies f is constant on Y;

RCOMP 1 11 for g,s st g≤s holds [.g,s.] = ].g,s.[ U {g,s};
RCOMP 1 15 (p<g implies ].p,g.[<>∅) & (p≤g implies p∈[.p,g.]

& g∈[.p,g.] & [.p,g.]<>∅ & ].p,g.[ c= [.p,g.]);
+RCOMP 1 24 for s,g st s≤g holds [.s,g.] is compact;

+RCOMP 1 25 for p,q st p<q holds ].p,q.[ is open;

+RCOMP 1 28 (ex r st r∈X) & X is compact implies X is bounded;
RCOMP 1 6 [.g,s.] = {r : g≤r & r≤s };
RCOMP 1 7 ].g,s.[ = {r : g<r & r<s };
REAL 1 14 x-y=x+ -y;

REAL 1 26 -0=0;

REAL 1 33 x<>0 implies (1/x=x" & 1/x"=x);

REAL 1 39 y<>0 implies (-x/y=(-x)/y & x/(-y)=-x/y);

REAL 1 50 x≤y iff -y≤-x;
REAL 1 53 x ≤ y iff x+z≤y+z;
REAL 1 59 x<y implies x+z<y+z & x-z<y-z;

REAL 1 66 x < 0 iff 0 < -x;

+REAL 1 67 ((x<y & z≤t) or (x≤y & z<t) or (x<y & z<t)) implies x+z<y+t;
+REAL 1 72 0<z implies 0<z";

REAL 1 73 0<z implies (x<y iff x/z<y/z);

REAL 1 83 -(x-y)=y-x;

+REAL 1 92 ((x ≤ y & z ≤ t) implies x - t ≤ y - z) & (((x < y &

z ≤ t) or (x ≤ y & z < t) or (x < y & z < t)) implies x-t < y-z);

+RFUNCT 2 10 seq.n ∈ rng seq;
RFUNCT 2 18 seq is convergent & (for n holds seq.n≤0) implies lim seq ≤ 0;
+RFUNCT 2 19 (for n holds seq.n∈Y) implies rng seq c= Y;
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+RFUNCT 2 42 Y c= dom h & hoY is bounded & upper bound (h(Y)) = lower bound (h(Y))

implies h is constant on Y;

SEQ 1 7 seq is not 0 iff for n holds seq.n<>0;

+SEQ 1 def 8 func seq" -> Real Sequence means for n holds it.n=(seq.n)";

+SEQ 2 10 0<r1 & r1<r & 0<g implies g/r<g/r1;

SEQ 2 2 g/2 +g/2=g & g/4 +g/4=g/2;

SEQ 2 31 seq is convergent & (for n holds 0≤seq.n) implies 0≤(lim seq);
+SEQ 2 6 0<g & 0<p implies 0<g/p;

SEQ 4 24 (X is bounded & ex r st r∈X ) implies (lower bound X)≤(upper bound X);
SEQ 4 46 0<r & (for n holds seq.n=g/(n+r)) implies seq is convergent & lim seq=0;

+SEQ 4 def 3 attr X is bounded means X is bounded below & X is bounded above;

SEQ 4 def 4 func upper bound X ->Real means(for r st r∈X holds r≤it)
& (for s st 0<s ex r st(r∈X & it-s<r));

SEQ 4 def 5 func lower bound X ->Real means (for r st r∈X holds it≤r)
& (for s st 0<s ex r st (r∈X & r<it+s));

+SQUARE 1 12 x ≤ y implies 0 ≤ y - x;
SQUARE 1 14 x/1 = x;

TARSKI def 2 func { y, z } -> set means x ∈ it iff x = y or x = z;
ZFMISC 1 37 {x} c= X iff x ∈ X;
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Appendix B

The statistics of usage of theorems and definitions in the proof of Rolle’s
theorem.
The first number says how many times the rule was really used in the original

proof, the second number says how many times it was possible to apply this rule
( using the program for rule application I created), and the third is the number
of situations in which both ocurred simultaneously, i.e. according to the original
proof the rule should be used, and at the same time according to my program
it was applicable at that place. If everything were ideal, the first and the third
numbers should be the same.

[[’RCOMP 1’,’:’,[’25’]], 1,2,1].

[[’FCONT 1’,’:’,[[’def’,’2’]]] 1,12,1].

[[’RCOMP 1’,’:’,[’24’]] 1,1,1].

[[’RCOMP 1’,’:’,[’15’]] 2,4,2].

[[’RCOMP 1’,’:’,[’6’]] 1,10,1].

[[’FCONT 1’,’:’,[’30’]] 1,1,1].

[[’RCOMP 1’,’:’,[’28’]] 1,1,1].

[[’SEQ 4’,’:’,[[’def’,’3’]]] 1,3,2].

[[’SEQ 4’,’:’,[’24’]] 1,0,0].

[[’RFUNCT 2’,’:’,[’42’]] 1,2,1].

[[’PARTFUN2’,’:’,[’57’]] 1,2,1].

[[’REAL 1’,’:’,[’73’]] 1,143,2].

[[’REAL 1’,’:’,[’67’]] 2,46,6].

[[’SEQ 2’,’:’,[’2’]] 2,1072,20].

[[’RCOMP 1’,’:’,[’7’]] 1,9,0].

[[’FDIFF 1’,’:’,[’30’]] 1,362,3].

[[’FDIFF 1’,’:’,[[’def’,’8’]]] 1,950,13].

[[’RCOMP 1’,’:’,[’11’]] 1,12,2].

[[’BOOLE’,’:’,[’8’]] 1,48,4].

[[’TARSKI’,’:’,[[’def’,’2’]]] 1,3824,40].

[[’SEQ 4’,’:’,[[’def’,’5’]]] 2,0,0].

[[’FDIFF 1’,’:’,[’16’]] 1,3,1].

[[’NAT 1’,’:’,[’19’]] 8,20,8].

[[’SEQ 1’,’:’,[’7’]] 4,0,0].

[[’NAT 1’,’:’,[’21’]] 10,20,10].

[[’SEQ 4’,’:’,[’46’]] 4,380,16].

[[’NAT 1’,’:’,[’18’]] 4,8,4].

[[’REAL 1’,’:’,[’53’]] 4,56,20].

[[’NAT 1’,’:’,[’38’]] 4,28,4].

[[’AXIOMS’,’:’,[’13’]] 14,28,14].

[[’SEQ 2’,’:’,[’10’]] 4,9,8].

[[’SQUARE 1’,’:’,[’14’]] 4,1068,28].

[[’REAL 1’,’:’,[’92’]] 2,16,12].

[[’SEQ 2’,’:’,[’6’]] 12,22,20].

[[’AXIOMS’,’:’,[’22’]] 8,52,0].

[[’REAL 1’,’:’,[’59’]] 6,3,0].

[[’REAL 1’,’:’,[’14’]] 4,34,6].

[[’FDIFF 1’,’:’,[’20’]] 4,21,16].
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[[’RFUNCT 2’,’:’,[’18’]] 2,0,0].

[[’FUNCT 1’,’:’,[’102’]] 5,13,5].

[[’SEQ 4’,’:’,[[’def’,’4’]]] 2,0,0].

[[’SQUARE 1’,’:’,[’12’]] 4,8,8].

[[’REAL 1’,’:’,[’83’]] 2,32,4].

[[’SEQ 1’,’:’,[[’def’,’8’]]] 4,18,12].

[[’REAL 1’,’:’,[’26’]] 14,360,20].

[[’REAL 1’,’:’,[’50’]] 14,52,4].

[[’REAL 1’,’:’,[’72’]] 4,2,2].

[[’REAL 1’,’:’,[’39’]] 2,46,4].

[[’REAL 1’,’:’,[’33’]] 4,1016,20].

[[’REAL 1’,’:’,[’66’]] 2,36,0].

[[’RFUNCT 2’,’:’,[’10’]] 10,8,8].

[[’RFUNCT 2’,’:’,[’19’]] 4,12,4].

[[’BOOLE’,’:’,[’29’]] 7,17,7].

[[’ZFMISC 1’,’:’,[’37’]] 4,22,0].

[[’SEQ 2’,’:’,[’31’]] 2,0,0].
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