ELLIOT

 

Project name: European Large Open Multi-Modal Foundation Models For Robust Generalization On Arbitrary Data Streams
Acronym: ELLIOT
LinkedIn profile: www.linkedin.com/company/elliot-eu/
ID code: 101214398
Call: HORIZON-CL4-2024-HUMAN-03-01
Supported by: European Union, Horizon Europe
Project duration: 07/2025-6/2029 (48 months)
Principal investigator at CIIRC: Dr. Ing. Josef Šivic
Coordinator: Ethniko Kentro Erevnas kai Technologikis Anaptyxis, Greece
Project partners: Eberhard Karls Universität Tübingen, Germany
Forschungszentrum Jülich GmbH, Germany
Universiteit van Amsterdam, Netherlands
Technische Universiteit Eindhoven, Netherlands
Università degli Studi di Trento, Italy
Centre de Visió per Computador, Spain
Institut Jožef Stefan, Slovenia
Globaz, S.A., Portugal
Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Spain
CSC – IT Center for Science Ltd., Finland
CINECA Consorzio Interuniversitario, Italy
Ludwig-Maximilians-Universität München, Germany
Universitat de València, Spain
Università degli Studi di Modena e Reggio Emilia, Italy
Aalto University Foundation SR, Finland
Fundación de la Comunitat Valenciana Unidad ELLIS Alicante, Spain
ELLIS Institute Tübingen gGmbH, Germany
Czech Technical University in Prague, Czech Republic
CISPA – Helmholtz Center for Information Security gGmbH, Germany
Katholieke Universiteit Leuven, Belgium
Voxist, France
Valeo Comfort and Driving Assistance, France
Robotwin s.r.o., Czech Republic
Openchip Software Technologies SL, Spain
DEIMOS Engineering and Systems SLU, Spain
DEIMOS Space UK Limited, United Kingdom
DEIMOS Space Sociedad Limitada Unipersonal, Spain
Departament de Territori, Habitatge i Transició Ecològica, Spain
De Vlaamse Radio en Televisieomroeporganisatie NV, Belgium
École Polytechnique Fédérale de Lausanne, Switzerland
Eidgenössische Technische Hochschule Zürich, Switzerland
Budget: Total budget: € 24,998,023.75
EU support: € 24,998,023.75
Support for CIIRC CTU: € 937,500.00
Media and Press Releases: 17.6.2025: ELLIOT: A Flagship Initiative to Develop Open Multi-modal Foundation Models for Robust Artificial Intelligence in the Real World

Abstract:

The ELLIOT project aims to develop the next generation of Multimodal Space-Time Foundation Models (MSTFMs), significantly enhancing the capabilities of general-purpose AI models in domains where the temporal dimension plays a critical role. These models will integrate spatio-temporal understanding with support for modalities not yet commonly addressed in large foundation models – such as industrial time series, remote sensing data, and health-related measurements.

While some modalities like visual input are already present in today’s generative AI systems, MSTFMs will go further – offering a unified framework for processing time-dependent data across various domains. A combination of real and synthetic data will be used for training. Real-world data will be sourced from consortium partners and European data spaces, while synthetic data will be generated using both existing generative AI techniques and new methods developed within the project.

A key priority of the project is European technological sovereignty. The necessary computational infrastructure for training these large models will be ensured through European High-Performance Computing (HPC) resources included directly in the consortium. This will allow the MSTFMs not only to be developed, but also deployed in practice – in areas such as healthcare, industry, and environmental monitoring.

The project  has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No. 101214398, within the topic HORIZON-CL4-2024-HUMAN-03-01 “Advancing Large AI Models.”